RDMS DocID 00100839 RCRA RECORDS CENTER FACILITY MACDERNO I.D. NO. CADONIO 599 FILE LOC. R-13 OTHER DDMS# 100239 #### **APPENDIX D** CT DEP Bureau of Water Management P-5 Files HRP Associates, Inc. # P- = File #### STATE OF CONNECTICUT #### DEPARTMENT OF ENVIRONMENTAL PROTECTION #### INDUSTRIAL SURVEY | WATER | COMPLIANCE/HAZA | RDOUS WASTE MANAG | SEMENT | | EPWC-9 NEW 1/83 | |---|-----------------|--|---------------------------|---|--| | COMPANY NAME | 1 / : - | TOWN | | DEP/WPC NO. | | | FiberCite I | ndustries | Water 60 | " " | REC. STREAM WATE | RSHED | | ADDRESS | **** | | | - | 2001 | | ADDRESS 172 £ 57 PL MAILING ADDRESS . I SITTEREN FROM | irara St. | CHIEF OFFICIAL - TITLE | + Hondles | funt Engineering 1 Operations DUCTION 13 | 755-/344 | | MAILING ADDRESS of sifterent from | location. | CONTACT TITLE KO | ch - Director Pl | lent Engineering | PHONE | | | | John Zola | dy - Director e | oution DA | SA-ME
SWORKED SHIFTS | | | | EMP. | 25 | 13 | 1-6 1,10 hr. | | DATE ESTABLISHED 4/ | 88 | | R. Langan | | 1/19/83 | | | | | | |) Shipped in rolls | | PROCESSES - Date Discha | | | | | | | A Mixing | | | | | | | B Impregnation | | | | | | | C Drying & Cur | | | | | | | D Research & De | welegment lab | | | | | | TYPE OF WASTE (each pr | • | | | | | | | , | up (vessels Flor | - esuspend) | | | | B None | 7 | - A SHOOL TO SHOUL TO SHOOL TO SHOOL TO SHOOL TO SHOOL TO SHOUL | | | ······································ | | | salvate 1- | a off into nor co | la tion continu | to income to | | | • | _ | A CIT INIC AST CO. | recess system | 10 Manes | | | D Waste solvent | Σ | | | | | | | | | | | | | NA/ATED LIE A CE | C-1 !: | HOW COMPLIED | | | DISCHARGED TO | | WATER USAGE | Galsper-day | HOW COMPUTED | | | | | Sanitary Sewage | 375 | 1 | es x 15 gpd | | Bovier Jayston/ | | Industrial Waste | 2880 | Non-contact 10 | eling water from | m head roller | Storm system us | | | 1040 | (pumps) | orising writer frag | - The maple stic. | Tank Rest drain | | | ? minimal | Air system per | ticle & condensat | vent pipes (2 | Into zound. | | Clean Discharge | | | | | | | | | | | | 2 | | Boiler Water | ? minimul | Potential Condens | | | your and | | in Product | | 2 Safety value | • | | -)pipes grand | | Unaccounted | | Actival boile | blenden- 15 (| lose looped. | | | TOTAL | 4295 | <u> </u> | | | | | WATER SOURCE(S) | ty Water | Add detail | s on well(s) | | · | | SANITARY TREATMENT - | - wone | · · · · · · · · · · · · · · · · · · · | | | · · · · · · · · · · · · · · · · · · · | | INDUSTRIAL TREATMENT | - Non- | | | | | | SAMPLE(S) COLLECTED_ | None | LOCATION | | | | | 5/COMMENTS A | cetone delivery | transfer pipe co | meetin is ever | red pipe hour | 1 42 extended into a dia | | waste solvent conta | .) | | uns in floor est in | 1 . | town should be coulte | | } | | on site which a | | | HRP or- treme .11 | | installed due to | \mathcal{L} | . / | CONTRACTOR CONTRACTOR | - July Je was | J. 1. 18-11. 51 . 17 115E115 | | 1125701100 (14 C) | 10-mes 11,00.1 | 4 . N = | | | | # STATE OF CONNECTICUT WATER RESOURCES COMMISSION out of Business n. 753-1150 | Name of company | Town | Wrzecury | Location on Map | |------------------------------|----------------|---------------------|---------------------| | 1 Taring 1 Taring 0 | | / | | | Mailing Address | | Stream Teal brook | Watershed Mauchine | | IMP E. Aurova | | act No Smale G | X7 | | | Type | of Problem Serious | Routine Minor None | | Date Established | 272 No. 6 | of Emp. | 8 17 55/12/12 | | Date of Last Ex | Repor | rt by E. PizzaTo | Date 3-2/- 29 | | Products 50 | onge Cv | Arpet Madecla, | | | Processes A Cool | lina water | for ININS CHIMADA | Runkury Air Como | | | | - cool Hiwished | | | | | cooling line - | | | T . | MOTAL F WATON | , | <u> </u> | | Origin of Wastes | / | | | | Wastes Contain A | | | | | ВВ | | | | | C | Heist Tran | ster oil. | | | D | trocess o | 1 | | | `amments Not Covered by | Above Data | boote lie Lessi C | in stadiovant | | - Structure sold of which or | went moduled - | y by CONN WATER SI | ON EMPTER SANTATION | | (D) residual oil | from Vinisher | d product runs ou | er expused to | | STORM Sewen - V | Aviable flow. | | | | Water Used For | San. Wastes | Industrial Wastes | Clean Water | | Discharged To | Municipal | STorm Sewer | STorm Sewer | | Water Usage | Gals-per-day | How Com | puted | | Sanitary Sewage | 1,575 | 85 emp, x 15 9 pcd. | + 2 30 showers | | Industrial Wastes | 4,000 | EsTimATe | | | Clean Discharge | 69, 7.00 | Estimate - over | | | Boiler Water | 2,160 | Estimate, formula. | - 150 hp. | | In Product | | | | | Unaccounted | 22,055 | make-up for AtB. | (TOTA - AT OThers, | | | | | | | Total Used | 119,253 | 1,192,500 fTs/qTr. | ÷10 | | SANITARY TREATMENT - | Municipal | | | | INDUSTRIAL TREATMENT - | 3 | | | | File Data Available: | | | | | | 3111 - TE e | mina 3-1-74 1,1 | 192,500 cu. FT. | | NOTE: COM JANY | | problem - nil re | ^ | | V / | selles | | | | | | 5 C | 7 (, ; | ### STATE OF CONNECTICUT WATER RESOURCES COMMISSION out of Business ph. 1753-1159 | Name of company | Town | Wrercury | Location on Map | |------------------------|---------------|---------------------|---------------------------------------| | <u> </u> | 4 Acron Ville | • | | | Mailing Address | | Stream Tean broas | Watershed Maucain | | IMP E. Purovo | | ict in Carton G | | | · | Type | of Problem Serious | Routine Minor None | | Date Established | 272 No. c | of Emp. | 8 17 55/18/12 | | Date of Last Ex. | Repor | et by E. PizzuTo | Date 3-21-74 | | Products 50 | onge Cx | Wisham Today | / | | Processes A Coo | I'ma water | PON INILLS CHIMAREN | - Runkury Air Come | | | | - cool Finished | | | c Pu | no zam | cooline line - | flow Through | | | MICTA + Van | } | · · · · · · · · · · · · · · · · · · · | | Origin of Wastes | · | | | | Wastes Contain A | | · . | | | В | | | | | C | Heat Trans | ster oil. | | | D | tracess o | | | | Comments Not Covered b | y Above Data | Queek oil stored | in sommer or une | | | | y by JOHN METERS | | | | | yo ener techora d | | | storm Sewer - v | aviable flow. | | | | Water Used For | San. Wastes | Industrial Wastes | Clean Water | | Discharged To | Municipal | Storm Sewer | STorm Sewer | | Water Usage | Gals-per-day | How Com | puted | | | } | 85 cmp, x 15 gpcd. | | | Industrial Wastes | 4,000 | Estimate | | | Clean Discharge | 69, 200 | Estimate - over | | | Boiler Water | 2,160 | Estimate, formula | - 150 hp. | | In Product | | | · | | Unaccounted | 22,065 | MAKE-up for At3. | (Tota - 20 others) | | | | | - | | Total Used | 119,250 | 1,192,500 fts/gtr. | ÷10 | | SANTTARY TREATMENT - | Municipal | | | | INDUSTRIAL TREATMENT - | | | | | ile Data Available: | | • | | | | 2111 - TE 2 | min 3-1-74 1, | 192,500 cu. FT. | | | | proflem - sil n | | | | | on 1004 de | | | | | wishe you "Tox | | ## STATE OF CONNECTICUT DEPARTMENT OF ENVIRONMENTAL PROTECTION #### INDUSTRIAL SURVEY | WATER | COMPLIANCE/HAZA | RDOUS WASTE MANAGEMENT | EPWC-9 NEW 1/83 | |--------------------------------------|------------------|---------------------------------|---| | COMPANY NAME | - | TOWN | DEP/WPC NO. 161 - 2222 | | U.S. Prolam = | | Waterbury | REC. STREAM WATERSHED | | DORESS East a | arcra St. | CHIEF OFFICIAL - TITLE | PHONE | | MAILING ADDRESS of different from i | | | PHONE PHONE | | MAILING ADDRESS (if different from I | ocaron) | | | | | | NO. of TOTAL PRO | U.P. 755-1344 DUCTION DAYS WORKED SHIFTS | | <u> </u> | 73 | | 5 87034hr | | DATE ESTABLISHED Cy | Maral > 1955 | REPORTED BY: TErry BEau | lieu DATE 10-7-86 | | _ | v | loard Laminates | | | PROCESSES - Date Discha | | | | | A Miring (Resi | | 6 Trimes in | | | B Treating (Imp |
 | est arount board for Q.C. | | c Cathing | 3 | | | | c Cutting D Turninating | Beere Entre Cont | 1956 Gillate Buffe | r(much we) | | TYPE OF WASTE (each pro | ocess) | 9:014:015 | · | | A Solvent Cace | | (| - Stap (18014) | | | | E. Copp. | the all metals (Go (1) | | B Glass Fabric to | aumpsietynic | - water Frisher | witer with spent etching (Ferricalbase | | C Scrap | | . (. 4 | 4 4 1 1 1 1 | | D Non-contact coo | ling water | | twiter dish to a 13'x12'x1co | | | | holding Pitin | Bldg. Pumped out. AL brains | | | | Shidge 4 | enterowely by EUR-WiBu | | WATER USAGE | Galsper-day | HOW COMPUTED | DISCHARGED TO | | Sanitary Sewage | 1560 | 104 Emp x 159 pd = 156 | O Cty Sever | | Industrial Waste | | 7 | , v | | Clean Disch | | air conditioning to cooling | touer No Disch | | clean Disch | | Laminating press (HONLON | tact Solid popular Place SCB-River | | Clean Discharge | | Coding rells water from impre | quating machine CB = River | | | | SCC N. tool | | | Boiler Water 150 ths | TERMOTES SUFE | | in winter. Catch Busines | | In Product | * | | | | Unaccounted | | | | | TOTAL | 69,460 | | | | WATER SOURCE(S) (TT | ou Water Col | 3-30-96 HATE | 7/65-
 | | SANITARY TREATMENT — | 616 | | 110 21) 110 | | | Many | | 10,00 | | INDUSTRIAL TREATMENT | | LOCATION O C. 1 = ± c. 1 | 2 10 == 10 | | SAMPLE(S) COLLECTED | | LOCATION DYE + ESTEL SCIMP IN F | | | ES/COMMENTS Ha | 1 | | apperluhenthey operated in Stamford | | 1.0 | | Solviam morder to | bring them into compliance | | Condensate | | HEL NEHT PRIMS bLESSALE 4. | | | of Bilda " | DELINE hat we | ter to the ground which m | akes its way to a Hearby Catchin | | EPWC-9 NEW 1:83 (Back) | | WASTE PROFILE * | | | |---|--|---|------------------------------------|---| | TYPE OF WASTE | Amount/Frequency
gals, lbs.,/wk, mo., yr. | On-Site Storage Less than 90 days (1) More than 90 days (2) drums, tanks etc. | Transporter | OFF-SITE Hazardous Waste Facility Licensed ? | | Metal Contain | 15 gold month | (1) | EWR | Pending | | - CECHNOSC. | | () | | | | Juli Cintis | ing Syd June | Z (1) | | | | Regides | le a lad butch: | 360 guls, cq.) (1) | <u> </u> | | | 20 yals- | Convin Arlis | 360 gals, eq.) (1)
- 1985 - | * list of ahour | culs used by Lea enclared. | | | | | | | | Has this firm notified EF
IF YES as a-Generator: | PA (under RCRA) ? NO | YESYES | _ ID Number <u>CTF /</u>
*TS | 00006069
DF: | | Attach copy of Notific) TYPE OF WASTE | | PROFILE prior to Nov. 11, 198 | 80 (off-site disposal) Transporter | Off-Site Location | | | | | | | | | osal):
TICS: | ndicate type of waste, amour | ES COLLECTED SCHEDE | n-site disposal was used. (Specify and | | | Oleand
out XI
At days end.
Discharge go
somitary der | 1) Sign tundes or
2) Cleaner tunder
es to the
me (pinous). | - Lyi
- Legn | a Brite area (Cleams) (550gal trake) in -brite - 10 (550gal) in - Clean - 1 (550gal) | | | * See breakdom | - of "Arms of Water Discharge | "gnelosed. | • | ### STATE OF CONNECTICUT WATER RESOURCES COMMISSION <u>___</u> | Name of company | Town | - عار' | Gi (); | Loca | tion on Map | 103 | |---|---------------------|----------------|--|--|----------------|-------------------------------| | Floured Factor Co | i | Lage | | | • | | | Mailing Address | | . Stream | | | Watershed // | to a to the second | | PO. FOX RIGE (172 E. Ruhor | Con | tact fa | Lian itech | | Manager | | | water 06750 | Type | e of Prol | olem Ser | rious Ro | utine Mi | nor None | | Date Established June | 1067 No. | of Emp. | 90 | /5 | <i>7</i> ⊌⁻ | 50
000 | | Date of Last Ex. | Rep | | | | Date //- | | | Products metal cr | Emping | | | | | | | Processes A stant | | | | | | | | B <u>@ 20 k</u> | ets (neopie | ne) | | · · · · · · · · · · · · · · · · · · · | | | | C dryin | - 6 | | | · · · · · · · · · · · · · · · · · · · | | | | D / | <u> </u> | <u></u> | | | | | | Origin of Wastes | | | | | | | | Wastes Contain A w | WELL COMES CO | -7-7:0 | TON PARTY W | 570x - 1. 1 | 8 6 6 | | | В | | | | | | | | | | ·· | | | | | | D_ | | | | | | | | Comments Not Covered by | Above Data 🗡 | 1415700 C | aluste oil | <u>(* </u> | ATTION - TO M | Tree c | | Des 1 to 4 5 44 76 | <u> </u> | <u> </u> | | · · | 6 % ; | - | | and collection and Je | 000 <u>522 1</u> 27 | 702 5000 | 100 16 | TENE | . Compress | | | | | | | | | | | Water Used For | San. Wastes | In | dustrial W | astes | Clean Wa | iter | | Discharged To | sewch | * | | | | | | Water Usage | Gals-per-da | у | | How Comput | ed | | | Sanitary Sewage | 1850 | 90 a | in n. X/5 = | Free = 15 | TO JAN | | | Industrial Wastes | | 10 m | nines of the | ter solvein all | STATE WANTE & | cos och / yern.
Ro och ver | | Clean Discharge | | h | and the second s | | O LITORY | | | Boiler Water | | | · | | <u> </u> | | | In Product | <u> </u> | | | | | | | Unaccounted | | | | | | | | | | | | | | | | Total Used | | 1000 | . incluie | | For Flective C | 5. 1º. 500 a. 7 | | | 1.880 | | | | | • • | | | * | | | | | , | | SANITARY TREATMENT - | principal si | | | | | | | SANITARY TREATMENT - INDUSTRIAL TREATMENT - | principal si | | | | | | | SANITARY TREATMENT - INDUSTRIAL TREATMENT - | dere | Tarre | | Contract Con | | c.tr. | | SANITARY TREATMENT - INDUSTRIAL TREATMENT - | dere | Tarre | | Contract Con | | otr. | | SANITARY TREATMENT - INDUSTRIAL TREATMENT - | dere | Tarre | | Contract Con | | etr. | ### STATE OF CONNECTICUT WATER RESOURCES COMMISSION | Name of company Gayn | o F | Town | Water | 601- |] |
Locati | ion on | Map | 101 | Ç | |---|--|---------------|------------------|----------------------------|---------------------------------------|------------------|----------------|--------------|-------------|---------------------------------------| | Florica Control | | Villa | | | | | | | | | | Mailing Address | | | Stream | | | Wa | atershe | ed://a, | 19.5 | 5 / | | 50. Fax 0125 (170 F. Au | 1018 St.) | Conta | ct the | G24001 - | Procioent | | | , | | | | Gostoren 067 | / | | | olem S | | | tine | Mir | nor | None | | Date Established June | | No. o | f Emp. | -رحی | 6 | | 49 | | / | | | Date of Last Ex | | Repor | t by | P.W. | Genank | | Date | 11- | 69-1 | 72 | | Products Flectios | witches | FOX 2" X2 | rliance | · industi | s. je | | | | | | | Processes A here | h -100 2 | <u> 15. K</u> | torri | n= , 0 / 2 | 110- = 5 2 | بعر ، بین بسرے م | ly | | | | | В | <u> </u> | | ` | × / | \tag{'} ' | | | | | | | C | | | | | | | | | · | | | D | | | | | | | | | | | | Origin of Wastes | | | | | · | | مسطيعين مطالع | | | | | Wastes Contain A | | | | | | | | | | | | В | <u></u> | [0] | | | | | | | | | | С | | <u> </u> | | | | | | | | | | D | • | | | | | | | | | | | Comments Not Covered b | y Above Da |
ata | | | | | | | | | | | | | | | · | ··· | · · · · · · · · · · · · · · · · · · · | | - · | | | | | Water Used For | San. Wa | astes | In | dustrial | Wastes | | Clear | n Wat | ter | | | Discharged To | Sowe | | | | | | | | | | | Water Usage | Gals-pe | er-dav | | | How Co | moute | d | | | | | Sanitary Sewage | | <u></u> | معرود ودد | Consumption
Canifornius | OFICTAL F | lower & | Faskat 6 | 54. 13 | رق ت رسع | 14. | | Industrial Wastes | | <u> </u> | - Evaim | /, | e 1, 750 | -/c - | | <u> 210.</u> | USE - | | | Clean Discharge | | -, | | | | | | | | | | Boiler Water | | | | | | | | | | | | In Product | | | | | | | | | | | | Unaccounted | + | | <u> </u> | | | | | | | | | onaccounted | | | | | | | | | | | | Total Used | | | | o F Known | | | | | | | | | | | | | | . 1 | | | | | | SANITARY TREATMENT - INDUSTRIAL TREATMENT - | mus com | 1 Car Te | V. C. | <u> </u> | Troder. | 12/. | | | | | | ~ile Data Available: | 1/01- | | | | | · | | | | ····· | | | | | | | (10 -1 | | | | | | | ITES: Charmety auto | Ch - I'hli | 741 F /60 | <u> </u> | <i>₹ 6 ℃ €</i> | (7-3) | | | | | · | | | - | | | | | | | | | · · · · · · · · · · · · · · · · · · · | | | | | | | | | | | | | | | | | | | | | | | | | #### STATE OF CONNECTICUT - Form 1064 | Name of Company SPERRY REA | 'U (C | R.P. | Town WATEA
Village | | Locati | on on Ma | p 22 | | |----------------------------|-------------|-------------|-----------------------|------------|-----------------|---------------|---------------------------------------|-------------| | liner, on Fift. | <u> </u> | Ž 12. | Receiving Str | ream / | EEC
Broine V | latershed | NAUGE | u E.K | | Mailing Address | | | Contact Con | | | | | 1000 | | 172 EAST AURO | RA. | 57. | Type of Probl | lem - | Serious, | Routine, | Minor, N | lone | | Date Est. 🕴 🤃 | | | No. of Employ | rees | 300 | 75 | 225 | 1 | | Date Last Exp. | | 1 | Report by | . AH | ERN |)
De | te 4/10 | 162 | | Products HAAA | . <u> /</u> | Chass | 1 2 77 8 3 | 1 1/2 | * # | 11 88 | 1 in straight | وتك و مسوعو | | Processes | | | | | | | ŧ | | | | В | ···· | | | | | | | | | С | | | | | | | | | | D | | | | | | | | | Origin of Waste | | | | | | · | | | | | | - N: | | | | | | | | | | | | | | | | | | Waste Contains | | | | | | | | | | | A | | | | | | | | | | В | | ····· | | | | | | | | С | | | | | | | | | | D | | | | | - | | | | Water Used For | | Sanit | ary Wastes | Inc | lustrial | Wastes | | Water | | Discharged To | | 2001 | wer. | | | | STREA | 177 | | Water Usage | | s per di | | | puted | | · · · · · · · · · · · · · · · · · · · | | | Sanitary Sewage | 75 | 00 | 500 | 0 X15 | | | | | | Industrial Wast | | | | | | | | | | Clean Discharge | 56 | 190 | | | u) = C. | | | | | Boiler Water | | 900 | 2501 | 4.02 - | 1 6 FIRS | 5% | nabe-u | 12 | | In Product | | | | | | | | | | Unaccounted | | | 11:27 6 | 77 - | | | ** | | | | | -390 | WATE | | WER 4 FT/9 | | | | | Total Used | 63 | 390 | 6339 | 00 6 | 4 + 7 / 9 | UPIKEN | | | | SANITARY TREATME | ENT - | STOR | M SEWE | 2 - | 57 E | EL BA | COCK | | | INDUSTRIAL TREAT | File Data Avails | ible | | | | | | | | | NOTES: | | · <u> </u> | | | | | <u> </u> | | | 10120. | | ·· | | | | | | | 0/7mg ### STATE OF CONNECTICUT WATER RESOURCES COMMISSION | Name of company | Town | WATELbury | Loca | ation on Map | 77 | |-------------------------|----------------------|---------------------------|---------------------------------------|---|------------| | Whomas Electronics | pla.T Villa | | | | | | mailing Address | | Stream | | Watershed | | | 150 E. Aurora 57 | Conta | et Phil Paulon | e - PIT. | ENJ. | | | | | of Problem Ser | | | nor None | | Date Established /99 | // No. o | f Emp. 350 | 125 | 275 | | | Date of Last Ex. — | | t by E. Pizzulo | | | -20-74 | | Products Elec | Tranic con | Du Ters | | | | | | lectronic A | | | | | | 1 | Iderin- | ′ | | • | · | | C 2 | Ain Tins - | Dry FilTers | | · · · · · · · · · · · · · · · · · · · | | | D () | serenser - | IN Trichloreth | 1100 - 1 | lubbard Ha | ill cham. | | Origin of Wastes | V | | · · · · · · · · · · · · · · · · · · · | ······ | | | Wastes Contain A | | | | -14-11" | | | - B | vegethble. | oi/ | | | | | | | · | · | | | | p | studge fr | on 57111- 5 | olven T. | | | | Comments Not Covered by | Above Data | (B +1) - 570, | ed in | 55 701 | drums | | outside of | JINNT - knu | yed Awar Lo | ه دره درستر د | 6. m. 7 11/ | 6.11 | | 4 winsty views | ·11 (B) ≈ Z | 50-300 gAllyr. | (e) ~ | 1,000 3 Al. /4 r. | | | | | | | | | | Water Used For | San. Wastes | Industrial Wa | stes | Clean Wa | ter | | Discharged To | Municipal | Licenced waste | Huchen | STorm S | e water | | Water Usage | Gals-per-day | | How Comput | ted | | | Sanitary Sewage | 5,250 | 350 mp. | 15 April | 1: (25 - 3 | and I | | Industrial Wastes | | Licens d wines | | • | | | Clean Discharge | 1,000
3,500 | Nonventer STILL - STANTAN | oo gwilhr. | x_ 2 hrs | | | Boiler Water | 2,700 | 180 X100 X 1500 | 75 + 70 = 78 | . در اد د | | | In Product | | | | | | | linaccounted | 6,740 | 21,190 - 14,4 | | | • | | | 2,000 | Air Cond unp v | with the off | 30p7- 150 | Von | | Total Used | 27,720 | 211,900 24.17./9 | 71. +10 | | | | SANITARY TREATMENT - | MUNICIPA | NOTE - 7-1-75 - 2 K | line of the second | La lax | | | INDUSTRIAL TREATMENT - | ı | eve. | · ·1 | est de la companya | | | ile Data Available: | | | • | | | | | and the first of the | A CAR A SECUL | 211,900 | cu. 17 7/2 | 1 / Nel,74 | | YOTE NO WO | | | | | | | | man be he | • | | | | | | | 570h - 2100 | 10 P | | n in mary | | | 11.11.5 | | | | | ### STATE OF CONNECTICUT WATER RESOURCES COMMISSION | Name of company | Town | WEJERCITY | Location on Map 7/ | |----------------------|---------------------------------------|---
--| | 200 MA 10 | Villa | ge | | | Mailing Address | Rec. | Stream (Tell Toll) | Watershed / Lotter to | | Z. / E. Herors | | et San San | • | | | Type | of Problem Serious | Routine Minor None | | Date Established | 1957 No. 0 | of Emp. 5 | | | Date of Last Ex. | ノラグミ Repor | t by F | Date 3-50-29 | | Products Zado | CTREE FEET | FILE CONFIGURA | - MAINT | | Processes A 👇 🖔 | With Market Co. | A CAN THE U.S. LAND | | | B - × | borrows - A | TRINGE OF PIKTS | ~ solutions | | C | · / | · | | | D | | | | | Origin of Wastes | | | | | Wastes Contain A | | | | | . В | | With the state of | Contract to William | | С | | , | | | D |) | | · | | Comments Not Covered | by Above Data | P Myon The . M | 2 6 1 1 1 2 1 1 2 2 1 1 2 2 1 1 2 2 1 1 2 | | Covered to | DY 1.DOVC DOCC | | | | Water Used For | San. Wastes | Industrial Wastes | Clean Water | | Discharged To | 1 2000 4 4 | | \(\color \color | | Water Usage | Gals-per-day | ~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ | omputed | | Sanitary Sewage | 1.790 | 76 000 31 15 | 5 P 48 5 | | Industrial Wastes | 6,000 | e-Trumwing | | | Clean Discharge | z 1,6 | er Tomany - Dur | | | Boiler Water | 3 02 y | 1.50 mp. + 50 i | R. B. C. March St. Commercial Com | | In Product | 2 2 4 2 | | <u> </u> | | Unaccounted | | | * | | | | | | | Total Used | | | of the of the second | | SANTTARY TREATMENT - | | | | | INDUSTRIAL TREATMENT | <u>- 1000 (1600)</u> | · · · · · · · · · · · · · · · · · · · | | | ile Data Available: | · · · · · · · · · · · · · · · · · · · | | | | | | es - Municipal + L | Well | | well water = | 17 5 6 0 0 | | | | | 1 C, 000 9 ppa. | | | | City of Waterbure | | = more ending to | 21.14 - 621600 fi | #### STATE OF CONNECTICUT - Form 1064 | ame of Company |) | Town WA7 | ER BUKY
Loc | ation on M | (ap 7/ | | |--------------------------------|-------------|---------------|---------------------------------------|-------------|---|--------------| | | | Receiving | Stream | Watershe | 1/1920,276
1816. | 10 K
1000 | | Ailing Address | | Contact | | | | | | 737 ERST AUR | ORA ST | Type of P | roblem - Seriou | s, Routine | Minor, Nor | 10 | | ate Est. | | No. of Em | oloyees | S 41 | | 1- 00 | | ate Last Exp. / S | / * · | Report by | 1. PHERN | | ate 6/10/6 | 2 | | | | E PEARLS | ک ساز ایمک | | | | | rocesses | A IV | | | | | | | ···· | BIFER | | | | | | | | C CAFF | , e.c. | | | | | | | D | | | | | | | rigin of Waste | | | · · · · · · · · · · · · · · · · · · · | | | | | | | | | | | | | | <u>C</u> | | | | | | | Vaste Contains | | | | | | | | | A | | | | | | | | <u>B</u> | | · | | · · · · · · · · · · · · · · · · · · · | | | | C | | | | | | | | D | | | | Class U | · · · · · · | | Water Used For | | nitary Wastes | Industria 57% ERM | | Clean W | | | Discharged To | | | | | | | | Water Usage
Sanitary Sewage | Gals per | | How Computed | | | | | Industrial Wast | | | 155+BW+C4 | رسان جي تال | | | | Clean Discharge | | 10 | 9 EM - 8 h | | · · · · · · · · · · · · · · · · · · · | | | Boiler Water | 4116 | | 35 HP 8hR | | make | | | In Product | _ | Ne | | <u> </u> | | | | Unaccounted | | | (| | V - V - V - V - V - V - V - V - V - V - | | | | | | | | | | | Total Used | 20,45 | y 103 | 900CHFT+1 | 00,080 | CM FT/9V | FIX. | | SANITARY TREATME | No. | MUNICI | PAL SEW | T R | | | | INDUSTRIAL TREAT | | | | | | | | I.DOCI.LIAD I.MAI | · miri | <u>~</u> | | <u> </u> | | - | | | | | | | | | | File Data Amaile | hla | | | | | | | File Data Avails | ble | | | | | | Lord ### STATE OF CONNECTICUT P-5 UPDATED 4/14/81 ORIGINAL -3/24/15 DEPARTMENT OF ENVIRONMENTAL PROTECTION WATER COMPLIANCE/HAZARDOUS WASTE MANAGEMENT INDUSTRIAL SURVEY EPWC-9 NEW 1/83 | ITA MANUTAN | A C | | | | | | |--|--|--|--|-------------------------|-------------|---| | EN PHOUPHE | TURING CO. | WATERBURY | | 151- | 071 | | | <u> </u> | | VILLAGE | | REC. STREAM WAT | TERSHED | | | 237 EAST AUA | LOKA ST. | CHIEF OFFICIAL - TITLE WILLIAM MILLM CONTACT - TITLE | AN - PRESID | ENT | PHONE 574-6 | 780 | | MAILING ADDRESS of different from | | 1 | | | PHONE | | | • | | RICHARD J. HE | PRODUCTION | N 13 316 C3 D | 753 - 5 | SHIFTS | | · | | EMP. 75 | 25 2 | | | | | DATE ESTABLISHED 196 | .4 | REPORTED BY: E. SAM | NEER | DATE L | 1/14/87 | | | PRODUCTS INDUSTR | VAL ABRAISING U | COMPULNOS, PAINT ST | RIPPER. | | | • | | PROCESSES - Date Discho | arge Established (each | n process) | | | | | | A LICOMO BUFFING | Componno . Pir | NSING + COOLING | | | | | | B LABORATERY - ANALY | SIS OF PLATING SOLL | CTICA'S | | ··· | | | | C CLUMNERS MANNI | THETURE U. | | | | | | | D CHEMICAL BRIGHT | NETIS | | | | ··· | | | TYPE OF WASTE (each p | rocess) | | | | | | | A DYE SOME FATTY AC | 105 TALLOW + WATEX | , | | | | | | , | | 12 20, Cr, So + PAINT SELVENT | | | | · · · = · · · · · · · · · · · · · · · · | | C DETERLIENT WASTES | | | | | | | | 9 Brit 300 cyclos | ods OT Chimsel t | are Collection in eaching tor | reclaimetion -> | LWE | | | | MATER USAGE | Galsper-day | HOW COMPUTED | reclamation -> | LWE | | DISCHARGED TO | | WATER USAGE | Galsper-day | HOW COMPUTED | | LWF | | DISCHARGED TO | | 7 | Galsper-day | | | LWF | | | | WATER USAGE Sanitary Sewage | Galsper-day | HOW COMPUTED | | CWF | | | | WATER USAGE Sanitary Sewage | Galsper-day | HOW COMPUTED | | CWF | | | | WATER USAGE Sanitary Sewage | Galsper-day | HOW COMPUTED 75 employees x 15 gpd: | = 1,125 gpd. | 2 300 L WH | 5 | teste Bierk- | | WATER USAGE Sanitary Sewage Industrial Waste (ناکاد الاثنام) Clean Discharge | Galsper-day 1,125 6,000 (3/24) 25,000 | HOW COMPUTED 75 employees x 15 gpd: | = 1,125 gpd- | 2 300 L WH | 5 | min Serve | | WATER USAGE Sanitary Sewage Industrial Waste | Galsper-day 1,125 6,000 (3/2) 25,000 | HOW COMPUTED 75 emplyus x 15 ypd: Water Bill - | = 1,125 gpd.
7// H Cuft. {
740 H Cuft. | 2 3rd+ 4th
4th 1986. | 5 | teste Bierk- | | WATER USAGE Sanitary Sewage Industrial Waste (Water Water) Clean Discharge PROCESS RINSC | Galsper-day 1,125 6,077 (3/20) 25,000 1,800 2,000 | HOW COMPUTED 75 emplyus x 15 ypd: Water Bill - | = 1,125 gpd- | 2 3rd+ 4th
4th 1986. | 5 | teste Bierk- | | WATER USAGE Sanitary Sewage Industrial Waste (Water Water) Clean Discharge PROCESS RANSET Boiler Water | Galsper-day 1,125 6,000 (3/24) 25,000 1,800 2,000 2,000 | HOW COMPUTED 75 emplyus x 15 ypd: Water Bill - | = 1,125 gpd.
7// H Cuft. {
740 H Cuft. | 2 3rd+ 4th
4th 1986. | 5 | teste Bierk- | | WATER USAGE Sanitary Sewage Industrial Waste (Wake Water) Clean Discharge Placess funsa Boiler Water In Product | Galsper-day 1,125 6,000 (3/20) 25,000 4,800 2,000 2,000 32,136 (ddf-5) | HOW COMPUTED 75 emplyus x 15 ypd: Water Bill - | = 1,125 gpd.
7// H Cuft. {
740 H Cuft. | 2 3rd+ 4th
4th 1986. | 5 | teste Bierk- | | WATER USAGE Sanitary Sewage Industrial Waste (Well With) Clean Discharge Places pinsa Boiler Water In Product Unaccounted | Galsper-day 1,125 6,000 (3/24) 25,000 1,800 2,000 2,000 | HOW COMPUTED 75 anyliques x 15 ypd: Water Bell - | = 1,125 gpd.
7// H Cuft. {
740 H Cuft
ve = 72,550 g | 2 300+ 4th
9to 1986. | S | tecte Bicek - ophistim for | | WATER USAGE Sanitary Sewage Industrial Waste (Water Water) Clean Discharge PROCESS RINSC Boiler Water In Product Unaccounted | Galsper-day 1,125 6,000 (3/20)
25,000 1,800 2,000 2,000 32,156 (648-5) 70,061 | HOW COMPUTED 75 emplyus x 15 ypd: Water Bill - | = 1,125 gpd.
7// H Cuft. {
740 H Cuft
ve = 72,550 g | 2 300+ 4th
9to 1986. | S | tecte Bicek - ophistim for | | WATER USAGE Sanitary Sewage Industrial Waste (Wall Water) Clean Discharge PROCESS PARSE Boiler Water In Product Unaccounted TOTAL WATER SOURCE(S) SANITARY TREATMENT — | Galsper-day 1,125 6,000 (3/20) 25,000 1,800 2,000 2,000 32,156 (ddf-5) 70,061 | HOW COMPUTED 75 anyliques x 15 ypd: Water Bell - | = 1,125 gpd.
7// H Cuft. {
740 H Cuft
ve = 72,550 g | 2 300+ 4th
9to 1986. | S | tecte Bivek - ophistinger | | WATER USAGE Sanitary Sewage Industrial Waste (Water Water) Clean Discharge PROCESS PARSE Boiler Water In Product Unaccounted TOTAL WATER SOURCE(S) SANITARY TREATMENT— INDUSTRIAL TREATMENT | Galsper-day 1,125 6,000 (3/20) 25,000 1,800 2,000 2,000 32,156 (ddf-5) 70,061 - Municipal | HOW COMPUTED 75 anyliques x 15 ypd: Water Bell - | = 1,125 gpd.
7// H Cuft. {
740 H Cuft
ve = 72,550 g | 2 300+ 4th
9to 1986. | S | tecte Bicek - ophistim for | | WATER USAGE Sanitary Sewage Industrial Waste (Water Water) Clean Discharge PROCESS RINSC Boiler Water In Product Unaccounted TOTAL WATER SOURCE(S) SANITARY TREATMENT INDUSTRIAL TREATMENT | Galsper-day 1,125 6,000 (3/20) 25,000 1,800 2,000 2,000 32,156 (ddf-5) 70,061 - Municipal | HOW COMPUTED 75 amplying x 15 gpd: Water Bull Add details on we | = 1,125 gpd.
7// H Cuft. {
740 H Cuft
ve = 72,550 g | 2 300+ 4th
9to 1986. | S | tecte Bicek - ophistim for | | WATER USAGE Sanitary Sewage Industrial Waste (Water Water) Clean Discharge PROCESS PARSE Boiler Water In Product Unaccounted TOTAL WATER SOURCE(S) SANITARY TREATMENT— INDUSTRIAL TREATMENT | Galsper-day 1,125 6,000 (3/20) 25,000 1,800 2,000 2,000 32,156 (ddf-5) 70,061 - Municipal | HOW COMPUTED 75 amplying x 15 gpd: Water Bull Add details on we | = 1,125 gpd.
7// H Cuft. {
740 H Cuft
ve = 72,550 g | 2 300+ 4th
9to 1986. | S | tecte Bicek - ophistim for | # STATE OF CONNECTICUT DEPARTMENT OF ENVIRONMENTAL PROTECTION . | Name of company | Town | MARTON RUCK | ocation on Map Co | |-------------------------|--------------------|--|--| | MATERIAL TO HAR YO | Villag | ge . | | | ✓ailing Address | | stream 7 | Watershed new Took | | E. T. Huyara II. | 1 | t i si s | • | | | Type o | of Problem Serious | Routine Minor None | | Date Established 7 /70 | | | 31 70/20/12 | | Date of Last Ex. | Report | by E. PizzoTo | Date /- 2/- 29 | | Products Flat coi | led clock B | rus Nickle - Hours | - Bronze. | | Processes A Contin | * . | | | | B Rolling | 2 | E. Clentino | | | C knnev | Iline | 3. Prote Steven | er - bund o | | | 7 y 2 | | | | Origin of Wastes | .· | | | | Wastes Contain A | | | | | В | 1
Level Bearing | Punt | | | C | | | | | D | | | | | Comments Not Covered by | Above Data | $\mathcal{L}^{\mathcal{L}} = \{ \{ \}_{1 \leq i \leq n} \in \mathcal{L} \} $ | ST SYNON OF ALTON | | servalling stiller las | is to store | A STATE OF THE STA | Was de la participa de la companya della companya della companya de la companya della d | | | | | , | | | | | | | Water Used For | San. Wastes | Industrial Wastes | Clean Water | | Discharged To | | STYLL | | | Water Usage | Gals-per-day | How Con | nouted | | Sanitary Sewage | | 120 W X / Saped, + | Reading X 100 . A Charles | | Industrial Wastes | | | | | Clean Discharge | | | | | Boiler Water | | The same has a same | У. : | | In Product | | | • | | Unaccounted | | | | | | | | | | Total Used | 1,769 | 12.682 64.47, 1570 | | | SANITARY TREATMENT - | June 10 1 - 1 | | | | INDUSTRIAL TREATMENT - | * | | | | ile Data Available: | | | | | NOTES: City water | <u> </u> | 128 14 / 18 4001 | w weker-up only | | 17,692 CU. PT. INC | 7' =7 | | | | All while or | ¥* / | KKEE Francis | est house | | | | | | | Name of Company | | Town WATER Village | Location on N | Man 27 | |------------------------|-------------------|---------------------------------------|-------------------------------|--------------| | ROLLING A | r
Malels Jive. | | STEELS ream BKOCK Watershe | • | | failing Address | CITE EL STREET | | 9N KRRWIN-PLF. | | | EAST AUXO | RA ST | | lem - Serious Routine | | | ······ | 203 | No. of Employ | 1/00 | Minor, Nône | | Date Last Exp. | | Report by | 1000 | Date 6/10/62 | | | ING. ROLLI. | | , SILVER, BRASS, P | | | Processes | A CASTII | | | | | | BROLLIN | | | | | | C PICKLIN | 10 | | | | | DANNEA | LING | ···· | | | Origin of Waste | | · · · · · · · · · · · · · · · · · · · | | | | | | | | | | | | | | | | Waste Contains | | | | | | | | RIC ACID | | | | | | | F) PHOSPHOR | | | | C NICKEL | | · | | | | DCOPPER | | | | | Water Used For | | tary Wastes | Industrial Wastes | Clean Water | | Discharged To | > <i>TK</i> / | EAM (U) | STREAM (U) | STREAM | | Water Usage | Gals per d | | low Computed | | | Sanitary Sewage | | | 1 X / 5 | , | | Industrial Wast | | | TOTAL (CONTACT) | | | Clean Discharge | 300 | 1504 | 101 AL ((ON) 14CT) | | | Boiler Water | 300 | 15070 | ~ - 7011 K3 C 3 70 M1K3 | 100.015 | | In Product Unaccounted | | | | | | unaccounted | | | | | | Total Used | 120,000 | 250 | CPM-8HRS (CO | NTRCT) | | CANTO ADV MODEL ON | C 70 | PA SEW | | | | DANTIARI IREAIM | | | <u> ER -2 STEEL)</u>
Prok | 3740072 | | יאקקי זאדבייפוזהעד | IMENI / | | | ··· | | INDUSTRIAL TREAT | | | | | | | | | | | | File Data Avails | able | THOH SED | PINGENT PUTS F | TAKET | ## STATE OF CONNECTICUT DEPARTMENT OF ENVIRONMENTAL PROTECTION · ph. 751-215 | Name of company | Town | In/ATOR JOHN I | Location on Map.027 | |---|--|---|-----------------------------| | 1 July 1 Rolling 1 | Villa | ige | | | Mailing Address |
Rec. | Stream Steel brook | Watershed MANGETOCK | | | Conta | ict Ar Paulyana | · Pit. Erg. | | | Туре | of Problem Serious | Routine Minor None | | Date Established 13 | No. c | of Emp. 120 89 | 2/ 10/20/10 | | Date of Last Ex. | Repor | of Problem Serious of Emp. 170 89 of by E. Pizzallo | Date /- 2/-24 | | Products | Brass, Nickla | silve + Bronze. | flat coiled stock | | Processes A R. | <u>illing</u> | E. Blanking G. Part pspheric N. H. Pi | | | В см | stingcool | Jour G. PANT | To Clepner - Browlin SovenT | | · C 1415 | noulling - DTm. | ospheric N. H. Pi | ckling | | D +1: | T;wn | | | | Origin of Wastes | | | A | | Wastes Contain A | River water, of | 1 H NiTrict Su | ituric Acid. | | В | | | | | <u> </u> | | | | | D_ | | | • | | Comments Not Covered b | y Above Data | | | | With Rewied. | stored in War | سند.
رومواده روک بایدتور فاهدا - سروف | | | H sTrip pickling | line - rinse | goe: To pond, Di
un stiern from pond. | ip Tanks - rinse | | goes To Vive | r - outtall dou | UNSTERM From pond. | | | | | Industrial Wastes | \ | | Discharged To | Municipal. | Strewn | STRAM | | Water Usage | Gals-per-day | How Com | outed | | Sanitary Sewage | 1,920 | 120 emp × 1500cd | + 12 Thomas a so and. | | Industrial Wastes | | TAKEN From STEELE Broom | k - NOT METZ-Red. | | Clean Discharge | | | | | Boiler Water | | 3 x 100 hp. /Apr | ox.) | | In Product | | | | | Unaccounted | | | | | | | | | | Total Used | 1769 | 17,692 20,600 710 | | | SANITARY TREATMENT - | Municipal | | Industrial WASTE. | | INDUSTRIAL TREATMENT - | NONE | | | | e Data Available: | · · · · · · · · · · · · · · · · · · · | | | | NOTES: | | AU2.V. | | | CITY WATER | in in the same | A Kin wilces + cooling make | co (1) | | Water | 17 497 842 3 | FT- 1 11-7 572V | Municipa / | | $A \cup A \cup A = A \cup $ | $e^{-\epsilon} = O(\epsilon) - \epsilon$ | Taken Park | 1 | Date: March 16, 2001 Rev. No. 0 # APPENDIX H 1998 UST FACILITY NOTIFICATION FORM e\rdm\mac\mac-0036-ca-aocs HRP Associates, Inc. | £ | | | | | | | | | | | | | | | i | 38.8° | | | | | | |--|--|----------------|--------------------|--------------------------------------|----------------------------|--|------------------|---------------------------------|--|-----------------|---------------------------------------|-----|--------|--------|----------|-------|------------|------------|--|---|---| | A DATE BLITERED | O SE RECEIVED ODES FACILITY MEET NEW REQUIREMENTS? NO | LONGITUDE | 03 225 | E | in the second | | 275, 5700 | 19 FAILURE
DETERMINATION | CONDUCTED? (II "YES", enter "DATE" and attach results) (If "NO", enter "NO") | NO | 1 | | No | No | No | | No | No | | 22d OFFICIAL TITLE (c) owner or authorized representative). | Reg. Affairs | | - | C FEE FACILITY WEET N | l ti | 96 73 | TELEPH
(*) | TELEPHONE | ļ , | TELEPHONE | 18 | MONITORING SYSTEM (Specify Type from list B) | , , | ם | *** | Ω | Ω | p | • | ï | ï | 22b DATE SIGNED 9/1/98 | FICIAL TITLE 101 0 | of | | FOR STATE AGENCY USE ONLY | FEE BILLED | LATITUDE | 34 - | CODE | CODE | | ZIP CODE | 17 INTEGRAL
PIPING SYSTEM | DATE OF INSTALLATION OR REPLACEMENT (Mo.Yr.) | 5/75 | 09/2 | | 1959 | 1963 | 1978 | | 88/6 | 9/88 | 22b DA | 22d OF | Manager | | | in l | က | 7 | STATE ZIF | STATE ZIP CODE | ļ | 17 | PIPING | PHOTECTION (See List B) | I | ≥ | | 皿 | ជ | ≖ | | 3 | 3 | | | | | .94 | DINATE | STATE | ដ | ST. | STS | - | STATE E | 3 | List B)
CONSTRUCTION
MATERIAL (See List A) | က | 7 | | 7 | 7 | 7 | 14. 1 | _ | 7 |
1 1 | | guo | | . Hev 5/94 | GRID COORDINATES | | | | | | | NAC | OTHER. | I | ш | | # | Ħ | Ħ | | | | 1 | | Strong | | ĘPHM⋅6 | 0 GR | | | | | | | ION
b. EXTERNAL | CATHODIC
PROTECTION | | | | | | | | × | × | | NAME (Type or Print) | | | | trá | _ | È | ~ | 7 | | - | F | COATED/ | | | | | | | | | | S-SNATURE | AE (Type | Gregory | | | , Q | CITY OF TOWN | Waterbury | CITY OF TOWN | NWO. | | CITY OF TOWN | 16 PROTECTION
SN/1 b. E | Cathodic
PROTECTION | | | | | | | | × | ۶< | | NAN | Gre | | 100 | | CITY.O | Wate | CITY 0 | CITY O | | CITY C | 16
INTERN | NACINED | × | × | | ĸ, | × | M | | | | | y not to | malion | | | " | | ð | | , | 0 | | , a | "rINED | • |], | | | | , | | | | onally ex
uments a | accurate and complete. notify snall be subject to a civil penalty not to | false into | | Service
Service
Service | SLE. | 2 1 | | | , | FEDERAL (G.S.A:NO. | | \$ | OTHER-
(Specify from
List A) | | | - | | | | | | |
ave pers
thed doc
obtaining | plete.
ct to a cr | or which | | W W | LEGIE | O L | _ | | 1 | (6.5 | ខាធ | ERES. | DITEJAG | × | | | | | | | | |
that I h
Jall attac
nsible for | and com
be subje | inen ar | | FOGR | S127 . | FERSE | 4 | | | ERA | - | 15. CONSTRUCTION MATERIALS | FIBERGLASS | | × | | × | M | × | | × | × |
ilty of lav
this and
ely respo | accurate and complete, | 100 | | F. red | Ment
06106-8
1ES ME | NEARES INTERSE | Casr St. /F | | ļ
[| FEL | | 15 | | | | | | | | | . ! | | our pena
penindari
meteriali | 4 5 E | 911111111111111111111111111111111111111 | | STATE OF CONNECTICAL DEPARTMENT OF THE PROGRAM UNDERGROUND STORAGE FACILITIES PROGRAM | Oursau of Waste Management 79 ELM STREET, Harrico (27 0e1/06-5127 TEL (660) 424-3374 PE OR PRINT, ALL THREE
COPIES MUST BE LEGIBLE, INTIDIA'S FOD EILING MATHEIR AND MARKE & AMBREE & MATHEIR AND MARKE MARKET & MATHEIR AND MARKET & MATHEIR AND MARKET & MATHEIR AND MARKET & MATHEIR AND MARKET & MATHEIR MATHE | NEAR | و | | | | | | NCIPAL
) | 4 2 | nane
5 | | | | | *** | | | 22. CERTIFICATION I territy unc consity of law that I have personelly examined and an familiar with the information sub-civity or has and all attached documents and that based on my inquiry of those individuals in missing responsible for obtaining the information. | i believe that the submitted information is remarked and who knowingly fair. | enceeds <u>subudoj or eart</u> ijags to varen notte. End gwen of for which laise information is submitted | | DF CON | Waste
 Hartfo
 (860) 4;
 LTHRI | | | | | | | | CHEMICAL NAME OF PRINCIPAL SUBSTANCE (not trade name) (Enter C.A.S. No., if known) | Heating fuel #2 | I,I,I, - Tricloroethane
CAS #79016 | -:- | 011 | 011 | 011 | and a | 011 | 911 | TON: LA | who kno | SDE(30) | | STATE (| TREET TEL | | n Ax | | ^ بر | | | SINI | NAME
E
iame)
S. No., ii | leating | -Tricl | | Fuel | Fuel | Fuel (| | Fuel | Fuel | FICAT
ar with th | the subn
ty owner | VV for ea | | Departn
GROUI | ELM S
OR PR | | opac | D
D | | A.L. | 4 | CONT | CHEMICAL NAM
SUBSTANCE
(not trade name)
(Enter C.A.S. No. | Τ. | = | | #2 F | #2 F | ~ | | 7 | Z E | CERT
am tamili
don my i | eve that
alties: ar | exceed \$ 10.0 | | UNDER | 79
TYPE | TREET | ուն | TREET | TREET | MUNICIPAL | HREET | 1
2 | | | | | - | * | | | * | |
22.
and a | en en | is su | | - 11 전 - 12 - 12 - 12 - 12 - 12 - 12 - 1 | Sureau of Waste Management 79 ELM STREET, Hartford, CT 0e106-5127 TEL (860) 424-3324 PLEASE TYPE GO PRINT, ALL THENE COPIES MUST BE LEGIBLE. PAGE 10 INSTRICTIONS FOR ELI ING. NOTHER CATION Pages & COPIES ACCORDING TO SURE ACC | NO. AND STREET | 526 Huntingdon Ave | O. AND S | NO AND STR | Mu. | NO AND STREET | 13 TYPE OF 14 CONTENTS CONTENTS | CHEMICAL | ¥ | × | | | | | * | | | | | ` | | | | Ž | 2 | z
 | z | | Ž | 13 | OILPETRO-
LEUM PRODUCT | × | | | × | × | × | | × | × | | | | | The state of s | | | | | | | | | DATE
TANK
LAST
USED
USED | | 8/78 | | 9/88 | 9/88 | 9/88 | | | | | • | | | | | | | | | щ | | | BEMOVED | | × | | × | × | | | | | | | | | 1 | O LIVER OF THE PARTY PAR | | | | | STATE | | ATUS | NTITY
ORED | | | | | | | A CO | | |
ES | | - | | -1- | | | | | | | ŀ | 12b. STATUS | EST. OUANTITY
LEFT STORED
(If any)
(Gals.) | | | | | | | | | | Ń | | | | PG of | 353 | | | | | | 000 | | IN PLACE | | | | | | | | | |
ATION? | | | | | 151-2853 | 1 | Inc. | • | 8 | YTE | Strong | J | NO USE | | | | | | × | | | |
7707.0 | | | | 'n | SITE 1.D. | | 14, | abo | abc | R PRIVATE | H | ., | | × | | | 0 | 0 | 0 | | 0 X | N O |
KS AN | | 1 | | BAG | (if checked. | <u>u</u> | Derm | . a | ме
Ѕате ав ароуе | | Gregory J. | , e | TOTAL
CAPACITY
(Gals) | 5000 | 8000 | | 10,000 | 10,000 | 6,000 | | 10,000 | 4,000 | F TAN | | | | UNDERGROUND STORAGE FACILITY NOTIFICATION | (if ch | SITE NAME | MacDermid, Inc. | NAME SAME AS ADOVE | Sam | | NAME Gre | 12a | (sread to a) | 30 | ì | | 15 1 | | | | | |
20. HAVE YOU ATTACHED SKETCH OF TANKS AND LOCATION? X YES
21. COMMENTS; | | | | UND STO | N E | 94. | antin o | 7 , | z | | | | LIFE EXPECTANCY | | ļ | | | 3 15 | | | 8 15 | 8 15 |
ED SK. | | | | POU
NOI | FIRST NOTIFICATION OR SUBSEQUENT | - 1 | 1 | BUSINESS NAME AND
MAILING ADDRESS | VNER | VNER | OPERATOR/CONTACT | 11a | DATE OF
INSTALLATION
(Mo.Yr) | 5/75 | 2/60 | | 1959 | 1963 | 1978 | | 88/6 | 88/6 | TTACH | | | | ERG | NOTI | LOCATION | OF FACILITY | NESS I | FACILITY OWNER | 8. TYPE OF OWNER | AATOR/ | | | <u></u> | <u>a</u> | | | | | | | |
20. HAVE YOU ATTAC
21. COMMENTS: | | | | INDE | ъ е | | | | 7. FACIL | TYPE | OPEF. | 0, | TANK 1.D | Example | Example | | 41 | BI | 13 | | A 2 | B 2 | HAVE | | | | : | HOHATO | 11 | 4 | ø. | 1 |) « | | 1- | 1 | ш | w | 1 | | i
 | _ | Me - | 1 | , | 1 2 5 | | ı | COPY 3; RETAIL TORYOUR RECORDER | n the reverse side' | ■ Complete items 1 and/or 2 for additional services. ■ Complete items 3, 4a, and 4b. ■ Print your name and address on the reverse of this form so that we card to you. ■ Attach this form to the front of the mailpiece, or on the back if space permit. ■ Write "Return Receipt Requested" on the mailpiece below the article "The Return Receipt will show to whom the article was delivered and delivered. | e does not | I also wish to rec following services extra fee): 1. Addresse 2. Restricte Consult postmas | s (for an
ee's Address
ed Delivery | eipt Service. | |---------------------|---|----------------------------|---|--|---------------| | ted o | 3. Article Addressed to: | 4a. Article N | umber
22 <i>201 3</i> | 252. |) Rec | | completed | Dept. of Env. Potection | 4b. Service | Type | 1 | Return | | ço | Bureau of waste mgmt. | ☐ Registere | ed | IN CELUIEU | _ | | SS | Underground Storage ank | ☐ Express | Mail | ☐ Insured | sing | | RESS | Underground Storage Tank
Enforcement Program | Return Re | ceipt for Merchandise | ☐ COD | 2 | | N ADD | 14 Flow Street 16106-5727 | 7. Date of D | SEP 0 8 199 | | you fo | | r RETUR | Received By: (Print Name) Signature: (Addressee or Agent) | 8. Addressed
and fee is | e's Address (Only i
paid) | f requested | Thank | | ls yon | X | 2595-97-B-0179 | Domestic Ret | urn Receipt | - | Z 755 507 325 US Postal Service Receipt for Certified Mail | | 190 insurance Coverage | Provided. | | |----------------------------------|--|------------------------|------| | | Do not use for Internation | nai Mail (See reverse) | | | ~ | Dept. of En | v. Protection | | | 3 | The puring the | an of Jugite | mgut | | 0 | Post Office, State & ZIP Con | ie
CT 46106-57 | , , | | - 00 | Postage | \$.32 | | | 6 | Certified Fee | 1.35 | | | | Special Delivery Fee | | 1 | | .20 | Restricted Delivery Fee | FERBURY | : | | 196 | Return Receipt Showing to Whom & Date Delivered | 200 | | | PS Form 3800 , April 1995 | Return Receipt Showing to Whom,
Date, & Addressee's Address | 1000 | | | 3800 | TOTAL Postage & Fees | \$ 2097 | | | E | Postmark or Date | | | | S Fo | | | 1 | | ă. | | Í | | Date: March 16, 2001 Rev. No. 0 # APPENDIX I 1995 SOIL LABORATORY REPORTS e\rdm\mac\mac-0036-ca-aocs **HRP** Associates, Inc. Date: March 16, 2001 Rev. No. 0 | 1995 S | OIL DATA INDEX FOR VOCs | | |--------------------|---------------------------|-------| | Groundwater/Boring | Former Boring Designation | Page | | B-1 | GZ-1 | 1 | | MW-103 | GZ-2 | 2 | | MW-112 | GZ-3 | 3 | | MW-113 | GZ-5 | 4 | | MW-111 | GZ-6 | 5 | | MW-105 | GZ-7 | 6 | | MW-109 | GZ-8 | 7 & 8 | | MW-108 | GZ-9 | 9 | | B-3 | GZ-10 | 10 | | B-2 | GZ-11 | 11 | | 1995 SC | OIL DATA INDEX FOR METALS | | | B-1 | GZ-1 | 12 | | MW-103 | GZ-2 | 12 | | MW-112 | GZ-3 | 12 | | MW-113 | GZ-5 | 12 | | MVV-111 | GZ-6 | 13 | | MVV-105 | GZ-7 | 14 | | MW-109 | GZ-8 | 14 | | MVV-108 | GZ-9 | 15 | | B-3 | GZ-10 | 15 | | B-2 | GZ-11 | 15 | #### EPA METHOD 8260 ANALYSIS FOR VOLATILE ORGANICS BY GC/MS CONCENTRATION (PPB-ug/kg - Solid) PROJECT: MACDERMID, INC. LOCATION: WATERBURY, CT FILE NO.: 41462 SAMPLE ID: MATRIX: GZ-1, S-5 (20-22') SOLID LABORATORY #: C1931 PROJECT MGR.: DATE SAMPLED: DATE EXTRACTED: DATE TESTED: 1/18/95 T. CARR 1/12 & 13/95 **DILUTION FACTOR:** | TARGET COMPOUND LIST | | QUANT. | TARGET COMPOUND LIST | | QUANT | |--------------------------------|----------|--------|-----------------------------|----------|-------| | 8260 COMPOUNDS | CONC. | LIMIT | 8260 COMPOUNDS: | CONC. | LIMIT | | DICHLORODIFLUOROMETHANE | ND | 10 | 2-HEXANONE (MBK) | ND | 10 | | CHLOROMETHANE | ND | 10 | 1,3-DICHLOROPROPANE | ND | 5 | | VINYL CHLORIDE | ND | 10 | TETRACHLOROETHENE | ND | 5 | | BROMOMETHANE | ND | 10 | DIBROMOCHLOROMETHANE | ND | 5 | | CHLOROETHANE | ND | 10 | 1,2-DIBROMOETHANE (EDB) | ND | 10 | | TRICHLOROFLUOROMETHANE | ND | 20 | CHLOROBENZENE | ND | 5 | | ACETONE | ND | 1.25 | 1,1,1,2~TETRACHLOROETHANE | ND | 5 | | 1,1-DICHLOROETHENE | ND | 5 | ETHYL BENZENE | ND | 5 | | METHYLENE CHLORIDE | ND | 5 | m&p-XYLENES | ND | 5 | | CARBON DISULFIDE | ND | 10 | o-XYLENE | ND | 5 | | METHYL tert-BUTYL ETHER (MtBE) | ND | 5 | STYRENE | ND | 5 | | trans-1,2-DICHLOROETHENE | ND | 5 | вномогонм | ND | 10 | | 1,1-DICHLOROETHANE | ND | 5 | ISOPROPYLBENZENE | ND | 5 | | VINYL ACETATE | ND | 25 | 1,1,2,2-TETRACHLOROETHANE | ND | 5 | | 2-BUTANONE (MEK) | ND | 125 | 1,2,3-TRICHLOROPROPANE | ND | 5 | | 2,2-DICHLOROPROPANE | ND | 5 | BROMOBENZENE | ND | 5 | | cis-1,2-DICHLOROETHENE | ND | 5 | n-PROPYLBENZENE | , ND | 5 | | CHLOROFORM | ND | 5 | 2-CHLOROTOLUENE | ND | 5 | | BROMOCHLOROMETHANE | ND | 5 | 1,3,5-TRIMETHYLBENZENE | ND | 5 | | 1,1,1-TRICHLOROETHANE | ND | 5 | 4-CHLOROTOLUENE | ND | 5 | | 1,1-DICHLOROPROPENE | ND | 5 | tert-BUTYLBENZENE | ND | 5 | | CARBON TETRACHLORIDE | ND | 5 | 1,2,4~TRIMETHYLBENZENE | ND | 5 | | 1,2-DICHLOROETHANE | ND | 5 | sec-BUTYLBENZENE | ND | 5 | | BENZENE | ND | 5 | p-ISOPROPYLTOLUENE | ND | 5 | | TRICHLOROETHENE | ND | 5 | 1,3-DICHLOROBENZENE | ND | 5 | | 1,2-DICHLOROPROPANE | ND | 5 | 1,4-DICHLOROBENZENE | ND | 5 | | BROMODICHLOROMETHANE | ND | 5 | n-BUTYLBENZENE | ND | 5 | | DIBROMOMETHANE | ND | 5 |
1,2-DICHLOROBENZENE | ND | 5 | | 4-METHYL-2-PENTANONE (MIBK) | ND | 5 | 1,2-DIBROMO-3-CHLOROPROPANE | ND | 25 | | cis-1,3-DICHLOROPROPENE | ND | 5 | 1,2,4-TRICHLOROBENZENE | ND | 5 | | TOLUENE | ND | 5 | HEXACHLOROBUTADIENE | ND | 5 | | trans-1,3-DICHLOROPROPENE | ND | 5 | NAPHTHALENE | ND | 5 | | 1,1,2-TRICHLOROETHANE | ND | 5 | 1,2,3-TRICHLOROBENZENE | ND | 5 | | SURROGATE | % RECOV. | | SURROGATE | % RECOV. | | | 1,2-DICHLOROETHANE - D4 | 104 | | TOLUENE - D8 | 102 | | ANALYZED BY: REVIEWED BY: Wall #### EPA METHOD 8260 ANALYSIS FOR VOLATILE ORGANICS BY GC/MS CONCENTRATION (PPB-ug/kg - Solid) PROJECT: MACDERMID, INC. LOCATION: WATERBURY, CT FILE NO.: SAMPLE ID: 41462 GZ-2, S-3 (10-12') MATRIX: LABORATORY #: SOLID C1932 PROJECT MGR.: DATE SAMPLED: 1/12 & 13/95 DATE EXTRACTED: DATE TESTED: 1/18/95 T. CARR **DILUTION FACTOR:** 1 | TARGET COMPOUND LIST | | QUANT. | TARGET COMPOUND LIST | gilar e gil | QUANT. | |--------------------------------|----------|--------|-----------------------------|-------------|--------| | 8260 COMPOUNDS | CONC. | LIMIT | 8260 COMPOUNDS: | CONC. | LIMIT | | DICHLORODIFLUOROMETHANE | ND | 10 | 2-HEXANONE (MBK) | ND | 10 | | CHLOROMETHANE | ND | 10 | 1,3-DICHLOROPROPANE | ND | 5 | | VINYL CHLORIDE | ND | 10 | TETRACHLOROETHENE | ND | 5 | | BROMOMETHANE | ND | 10 | DIBROMOCHLOROMETHANE | ND | 5 | | CHLOROETHANE | ND | 10 | 1,2-DIBROMOETHANE (EDB) | ND | 10 | | TRICHLOROFLUOROMETHANE | ND | 20 | CHLOROBENZENE | ND | 5 | | ACETONE | ND | 125 | 1,1,1,2-TETRACHLOROETHANE | ND | 5 | | 1,1-DICHLOROETHENE | ND | 5 | ETHYL BENZENE | ND | 5 | | METHYLENE CHLORIDE | ND | 5 | m&p-XYLENES | ND | 5 | | CARBON DISULFIDE | ND | 10 | o-XYLENE | ND | 5 | | METHYL tert-BUTYL ETHER (MtBE) | ND | 5 | STYRENE | ND | 5 | | trans-1,2-DICHLOROETHENE | ND | 5 | BROMOFORM | ND | 10 | | 1,1-DICHLOROETHANE | ND | 5 | ISOPROPYLBENZENE | ND | 5 | | VINYL ACETATE | ND | 25 | 1,1,2,2-TETRACHLOROETHANE | ND | 5 | | 2-BUTANONE (MEK) | ND | 125 | 1,2,3-TRICHLOROPROPANE | ND | 5 | | 2,2-DICHLOROPROPANE | ND | 5 | BROMOBENZENE | ND | 5 | | cis-1,2-DICHLOROETHENE | ND | 5 | n-PROPYLBENZENE | ND | 5 | | CHLOROFORM | ND | 5 | 2-CHLOROTOLUENE | ND | 5 | | BROMOCHLOROMETHANE | ND | 5 | 1,3,5-TRIMETHYLBENZENE | ND | 5 | | 1,1,1-TRICHLOROETHANE | ND | 5 | 4-CHLOROTOLUENE | ND | 5 | | 1,1-DICHLOROPROPENE | ND | 5 | tert-BUTYLBENZENE | ND | 5 | | CARBON TETRACHLORIDE | ND | 5 | 1,2,4-TRIMETHYLBENZENE | ND | 5 | | 1,2-DICHLOROETHANE | ND | 5 | sec-BUTYLBENZENE | ND | 5 | | BENZENE | ND | 5 | p-ISOPROPYLTOLUENE | ND | 5 | | TRICHLOROETHENE | ND | 5 | 1,3-DICHLOROBENZENE | ND | 5 | | 1,2-DICHLOROPROPANE | ND | 5 | 1,4-DICHLOROBENZENE | ND | . 5 | | BROMODICHLOROMETHANE | ND | 5 | n-BUTYLBENZENE | ND | 5 | | DIBROMOMETHANE | ND | 5 | 1,2-DICHLOROBENZENE | ND | 5 | | 4-METHYL-2-PENTANONE (MIBK) | ND | 5 | 1,2-DIBROMO-3-CHLOROPROPANE | ND | 25 | | cis-1,3-DICHLOROPROPENE | ND | 5 | 1,2,4-TRICHLOROBENZENE | ND | 5 | | TOLUENE | ND | 5 | HEXACHLOROBUTADIENE | ND | 5 | | trans-1,3-DICHLOROPROPENE | ND | 5 | NAPHTHALENE | ND | 5 | | 1,1,2-TRICHLOROETHANE | ND | 5 | 1,2,3-TRICHLOROBENZENE | ND | . 5 | | SURROGATE | % RECOV. | | SURROGATE | % RECOV. | | | 1,2-DICHLOROETHANE - D4 | 98.7 | | TOLUENE - D8 | 102 | | ANALYZED BY: REVIEWED BY: Hualil #### EPA METHOD 8260 ANALYSIS FOR VOLATILE ORGANICS BY GC/MS CONCENTRATION (PPB-ug/kg - Solid) PROJECT: MACDERMID, INC. LOCATION: FILE NO.: WATERBURY, CT 41462 SAMPLE ID: MATRIX: LABORATORY #: GZ-3, S-1 (0.5-2.5') SOLID C1933 PROJECT MGR.: DATE SAMPLED: T. CARR 1/12 & 13/95 DATE EXTRACTED: 1/18/95 DATE TESTED: **DILUTION FACTOR:** 1 | TARGET COMPOUND LIST | Tavati e esta | QUANT. | TARGET COMPOUND LIST | Franklik in 12. | QUANT. | |--------------------------------|---------------|--------|-----------------------------|-----------------|--------| | 8260 COMPOUNDS | CONC. | LIMIT | 8260 COMPOUNDS: | CONC. | LIMIT | | | | | | | | | DICHLORODIFLUOROMETHANE | ND | 10 | ` | ND | 10 | | CHLOROMETHANE | ND | 10 | 1,3-DICHLOROPROPANE | ND | 5 | | VINYL CHLORIDE | 27 | 10 | TETRACHLOROETHENE | ND | 5 | | BROMOMETHANE | ND | 10 | DIBROMOCHLOROMETHANE | ND | 5 | | CHLOROETHANE | ND | 10 | 1,2-DIBROMOETHANE (EDB) | ND | 10 | | TRICHLOROFLUOROMETHANE | ND | 20 | CHLOROBENZENE | ND · | 5 | | ACETONE | 170 | 125 | 1,1,1,2-TETRACHLOROETHANE | ND | 5 | | 1,1-DICHLOROETHENE | ND | 5 | ETHYL BENZENE | ND | 5 | | METHYLENE CHLORIDE | ND | 5 | m&p-XYLENES | ND | 5 | | CARBON DISULFIDE | ND | 10 | o-XYLENE | ND | 5 | | METHYL tert-BUTYL ETHER (MtBE) | ND | 5 | STYRENE | ND | 5 | | trans-1,2-DICHLOROETHENE | BMQL | 5 | BROMOFORM | ND | 10 | | 1,1-DICHLOROETHANE | ND | 5 | ISOPROPYLBENZENE | ND | 5 | | VINYL ACETATE | ND | 25 | 1,1,2,2-TETRACHLOROETHANE | ND | 5 | | 2-BUTANONE (MEK) | ND | 125 | 1,2,3-TRICHLOROPROPANE | ND | 5 | | 2,2-DICHLOROPROPANE | ND | 5 | BROMOBENZENE | ND | 5 | | cis-1,2-DICHLOROETHENE | 87 | 5 | n-PROPYLBENZENE | ND | 5 | | CHLOROFORM | ND | 5 | 2-CHLOROTOLUENE | ND | 5 | | BROMOCHLOROMETHANE | ND | 5 | 1,3,5-TRIMETHYLBENZENE | ND | 5 | | 1,1,1-TRICHLOROETHANE | ND | 5 | 4-CHLOROTOLUENE | ND | 5 | | 1,1-DICHLOROPROPENE | ND | 5 | tert-BUTYLBENZENE | ND | 5 | | CARBON TETRACHLORIDE | ND | 5 | 1,2,4-TRIMETHYLBENZENE | ND | 5 | | 1,2-DICHLOROETHANE | ND | 5 | sec-BUTYLBENZENE | ND | 5 | | BENZENE | ND | 5 | p-ISOPROPYLTOLUENE | ND | 5 | | TRICHLOROETHENE | ND | 5 | 1,3-DICHLOROBENZENE | ND | 5 | | 1,2-DICHLOROPROPANE | ND | 5 | 1,4-DICHLOROBENZENE | ND | 5 | | BROMODICHLOROMETHANE | ND | 5 | n-BUTYLBENZENE | ND | 5 | | DIBROMOMETHANE | ND | 5 | 1,2-DICHLOROBENZENE | ND | 5 | | 4-METHYL-2-PENTANONE (MIBK) | ND | 5 | 1,2-DIBROMO-3-CHLOROPROPANE | ND | 25 | | cis-1,3-DICHLOROPROPENE | ND | 5 | 1,2,4-TRICHLOROBENZENE | ND | 5 | | TOLUENE | ND | 5 | HEXACHLOROBUTADIENE | ND | 5 | | trans-1,3-DICHLOROPROPENE | ND | 5 | NAPHTHALENE | ND | - 5 | | 1,1,2-TRICHLOROETHANE | ND | 5 | 1,2,3~TRICHLOROBENZENE | ND | 5 | | SURROGATE | % RECOV. | | SURROGATE | % RECOV. | | | 1,2-DICHLOROETHANE - D4 | 105 | | TOLUENE - D8 | 96.6 | | ANALYZED BY: REVIEWED BY: Hull #### EPA METHOD 8260 ANALYSIS FOR VOLATILE ORGANICS BY GC/MS CONCENTRATION (PPB-ug/kg - Solid) PROJECT: MACDERMID, INC. LOCATION: WATERBURY, CT FILE NO.: 41462 SAMPLE ID: MATRIX: LABORATORY #: GZ-5, S-1 (0-2') SOLID C1936 PROJECT MGR.: DATE SAMPLED: T. CARR 1/12 & 13/95 DATE EXTRACTED: DATE TESTED: 1/18/95 **DILUTION FACTOR:** 1 | TARGET COMPOUND LIST | | QUANT. | TARGET COMPOUND LIST | QUANT | |--------------------------------|----------|--------------|--------------------------------|-------| | 8260 COMPOUNDS | CONC. | LIMIT | 8260 COMPOUNDS: CONC. | LIMIT | | DICHLORODIFLUOROMETHANE | ND | 10 | 2-HEXANONE (MBK) ND | 10 | | CHLOROMETHANE | ND | 10 | 1,3-DICHLOROPROPANE ND | 5 | | VINYL CHLORIDE | ND | 10 | TETRACHLOROETHENE ND | 5 | | BROMOMETHANE | ND | 10 | DIBROMOCHLOROMETHANE ND | 5 | | CHLOROETHANE | ND | 10 | 1,2-DIBROMOETHANE (EDB) ND | 10 | | TRICHLOROFLUOROMETHANE | ND | 20 | CHLOROBENZENE ND | 5 | | ACETONE | ND | 125 | 1,1,1,2-TETRACHLOROETHANE ND | 5 | | 1,1-DICHLOROETHENE | ND | 5 | ETHYL BENZENE ND | 5 | | METHYLENE CHLORIDE | ND | 5 | m&p-XYLENES ND | 5 | | CARBON DISULFIDE | ND | 10 | o-XYLENE ND | 5 | | METHYL tert-BUTYL ETHER (MtBE) | ND | 5 | STYRENE ND | 5 | | trans-1,2-DICHLOROETHENE | ND | 5 | BROMOFORM ND | 10 | | 1,1-DICHLOROETHANE | ND | 5 | ISOPROPYLBENZENE ND | 5 | | VINYL ACETATE | ND | 25 | 1,1,2,2-TETRACHLOROETHANE ND | 5 | | 2-BUTANONE (MEK) | ND | 125 | 1,2,3-TRICHLOROPROPANE ND | 5 | | 2,2-DICHLOROPROPANE | ND | 5 | BROMOBENZENE ND | 5 | | cis-1,2-DICHLOROETHENE | ND | 5 | n-PROPYLBENZENE ND | 5 | | CHLOROFORM | ND | 5 | 2-CHLOROTOLUENE ND | 5 | | BROMOCHLOROMETHANE | ND | 5 | 1,3,5-TRIMETHYLBENZENE ND | 5 | | 1,1,1-TRICHLOROETHANE | ND | 5 | 4-CHLOROTOLUENE ND | 5 | | 1,1-DICHLOROPROPENE | ND | 5 | tert-BUTYLBENZENE ND | 5 | | CARBON TETRACHLORIDE | ND | 5 | 1,2,4-TRIMETHYLBENZENE ND | 5 | | 1,2-DICHLOROETHANE | ND | 5 | sec-BUTYLBENZENE ND | 5 | | BENZENE | ND | 5 | p-ISOPROPYLTOLUENE ND | 5 | | TRICHLOROETHENE | ND | 5 | 1,3-DICHLOROBENZENE ND | 5 | | 1,2-DICHLOROPROPANE | ND | 5 | 1,4-DICHLOROBENZENE ND | 5 | | BROMODICHLOROMETHANE | ND | 5 | n-BUTYLBENZENE ND | 5 | | DIBROMOMETHANE | ND | 5 | 1,2-DICHLOROBENZENE ND | - 5 | | 4-METHYL-2-PENTANONE (MiBK) | ND | 5 | 1,2-DIBROMO-3-CHLOROPROPANE ND | 25 | | cis-1,3-DICHLOROPROPENE | ND | 5 | 1,2,4-TRICHLOROBENZENE ND | 5 | | TOLUENE | ND | 5 | HEXACHLOROBUTADIENE ND | 5 | | trans-1,3-DICHLOROPROPENE | ND | 5 | NAPHTHALENE ND | 5 | | 1,1,2-TRICHLOROETHANE | ND | 5 | 1,2,3-TRICHLOROBENZENE ND | 5 | | SURROGATE | % RECOV. | # <u>1</u> . | SURROGATE % RECOV. | | | 1,2-DICHLOROETHANE - D4 | 103 | | TOLUENE - D8 101 | | ANALYZED BY: REVIEWED BY: Hualil #### EPA METHOD 8260 ANALYSIS FOR VOLATILE ORGANICS BY GC/MS CONCENTRATION (PPB-ug/kg - Solid) PROJECT: MACDERMID, INC. LOCATION: MATRIX: WATERBURY, CT FILE NO.: SAMPLE ID: LABORATORY #: 41462 GZ-6, S-1 (0.5-2.5') SOLID C1937 PROJECT MGR.: DATE SAMPLED: 1/12 & 13/95 DATE EXTRACTED: DATE TESTED: 1/18/95 1 T. CARR **DILUTION FACTOR:** | TARGET COMPOUND LIST | | QUANT. | TARGET COMPOUND LIST | | QUANT. | |--------------------------------|----------|--------|-----------------------------|----------|--------| | 8260 COMPOUNDS | CONC. | LIMIT | 8260 COMPOUNDS: | CONC. | LIMIT | | DICHLORODIFLUOROMETHANE | ND | 10 | 2-HEXANONE (MBK) | ND | 10 | | CHLOROMETHANE | ND | 10 | 1,3-DICHLOROPROPANE | ND | 5 | | VINYL CHLORIDE | ND | 10 | TETRACHLOROETHENE | ND | 5 | | BROMOMETHANE | ND | 10 | DIBROMOCHLOROMETHANE | ND | 5 | | CHLOROETHANE | ND | 10 | 1,2-DIBROMOETHANE (EDB) | ND | 10 | | TRICHLOROFLUOROMETHANE | ND | 20 | CHLOROBENZENE | ND | 5 | | ACETONE | ND | 125 | 1,1,1,2-TETRACHLOROETHANE | ND | 5 | | 1,1-DICHLOROETHENE | ND | 5 | ETHYL BENZENE | ND | 5 | | METHYLENE CHLORIDE | ND | 5 | m&p-XYLENES | ND | 5 | | CARBON DISULFIDE | ND | 10 | o-XYLENE | ND | 5 | | METHYL tert-BUTYL ETHER (MtBE) | ND | 5 | STYRENE | ND | 5 | |
trans-1,2-DICHLOROETHENE | ND | 5 | BROMOFORM | ND | 10 | | 1,1-DICHLOROETHANE | ND | 5 | ISOPROPYLBENZENE | ND | 5 | | VINYL ACETATE | ND | 25 | 1,1,2,2-TETRACHLOROETHANE | ND | 5 | | 2-BUTANONE (MEK) | ND | 125 | 1,2,3-TRICHLOROPROPANE | ND | 5 | | 2,2-DICHLOROPROPANE | ND | 5 | BROMOBENZENE | ND | 5 | | cis-1,2-DICHLOROETHENE | ND | 5 | n-PROPYLBENZENE | ND | 5 | | CHLOROFORM | ND | 5 | 2-CHLOROTOLUENE | ND | 5 | | BROMOCHLOROMETHANE | ND | 5 | 1,3,5-TRIMETHYLBENZENE | ND | 5 | | 1,1,1-TRICHLOROETHANE | ND | 5 | 4-CHLOROTOLUENE | ND | 5 | | 1,1-DICHLOROPROPENE | ND | 5 | tert-BUTYLBENZENE | ND | 5 | | CARBON TETRACHLORIDE | ND | 5 | 1,2,4-TRIMETHYLBENZENE | ND | 5 | | 1,2-DICHLOROETHANE | ND | 5 | sec-BUTYLBENZENE | ND | 5 | | BENZENE | ND | 5 | p-ISOPROPYLTOLUENE | ND | 5 | | TRICHLOROETHENE | ND | 5 | 1,3-DICHLOROBENZENE | ND | 5 | | 1,2-DICHLOROPROPANE | ND | 5 | 1,4-DICHLOROBENZENE | ND | 5 | | BROMODICHLOROMETHANE | ND | 5 | n-BUTYLBENZENE | ND | 5 | | DIBROMOMETHANE | ND | 5 | 1,2-DICHLOROBENZENE | ND | 5 | | 4-METHYL-2-PENTANONE (MIBK) | ND | 5 | 1,2-DIBROMO-3-CHLOROPROPANE | ND | 25 | | cis-1,3-DICHLOROPROPENE | ND | . 5 | 1,2,4-TRICHLOROBENZENE | ND | 5 | | TOLUENE | ND | 5 | HEXACHLOROBUTADIENE | ND | 5 | | trans-1,3-DICHLOROPROPENE | ND | 5 | NAPHTHALENE | ND | 5 | | 1,1,2-TRICHLOROETHANE | ND | 5 | 1,2,3-TRICHLOROBENZENE | ND | 5 | | SURROGATE | % RECOV. | | SURROGATE | % RECOV. | | | 1,2-DICHLOROETHANE - D4 | 95.3 | | TOLUENE - D8 | 96.9 | | ANALYZED BY: REVIEWED BY: Huall #### EPA METHOD 8260 ANALYSIS FOR VOLATILE ORGANICS BY GC/MS CONCENTRATION (PPB-ug/kg - Solid) PROJECT: MACDERMID - WATERBURY, CT FILE NO.: 41462 PROJECT MGR.: T. CARR SAMPLE ID: GZ-7, 15-17' DATE SAMPLED: 2/15/95 MATRIX: SOLID DATE TESTED: 2/22/95 LABORATORY #: C2161 **DILUTION FACTOR:** 1 | TARGET COMPOUND LIST | | QUANT. | TARGET COMPOUND LIST | | QUANT. | |--------------------------------|-------|---------------------|-----------------------------|--------|--------| | 8260 COMPOUNDS | CONC. | LIMIT | 8260 COMPOUNDS: | CONC. | LIMIT | | DICHLORODIFLUOROMETHANE | ND | 10 | TETRACHLOROETHENE | ND | 5 | | CHLOROMETHANE | ND | 10 | DIBROMOCHLOROMETHANE | ND | 5 | | VINYL CHLORIDE | ND | 10 | 1,2-DIBROMOETHANE (EDB) | ND | 10 | | BROMOMETHANE | ND | 10 | CHLOROBENZENE | ND | 5 | | CHLOROETHANE | ND | 10 | 1,1,1,2-TETRACHLOROETHANE | ND | 5 | | TRICHLOROFLUOROMETHANE | ND | 20 | ETHYL BENZENE | ND | 5 | | ACETONE | ND | 125 | m&p-XYLENES | ND | 5 | | 1,1-DICHLOROETHENE | ND | 5 | o-XYLENE | ND | 5 | | METHYLENE CHLORIDE | ND | 5 | STYRENE | ND | 5 | | CARBON DISULFIDE | ND | 10 | BROMOFORM | ND | 10 | | METHYL tert-BUTYL ETHER (MtBE) | ND | 5 | ISOPROPYLBENZENE | ND | 5 | | trans-1,2-DICHLOROETHENE | ND | 5 | 1,1,2,2-TETRACHLOROETHANE | ND | 5 | | 1,1~DICHLOROETHANE | ND | 5 | 1,2,3-TRICHLOROPROPANE | ND | 5 | | VINYL ACETATE | ND | 25 | BROMOBENZENE | ND | 5 | | 2-BUTANONE (MEK) | ND | 125 n-PROPYLBENZENE | | ND | 5 | | 2,2-DICHLOROPROPANE | ND | 5 2-CHLOROTOLUENE | | ND | 5 | | cis-1,2-DICHLOROETHENE | ND | 5 | 1,3,5-TRIMETHYLBENZENE | ND | 5 | | CHLOROFORM | ND | 5 4-CHLOROTOLUENE | | ND | 5 | | BROMOCHLOROMETHANE | ND | 5 tert-BUTYLBENZENE | | ND | 5 | | 1,1,1-TRICHLOROETHANE | ND | 5 | 1,2,4-TRIMETHYLBENZENE | ND | 5 | | 1,1-DICHLOROPROPENE | ND | 5 | 5 sec-BUTYLBENZENE | | 5 | | CARBON TETRACHLORIDE | ND | 5 | p-ISOPROPYLTOLUENE | ND | 5 | | 1,2-DICHLOROETHANE | ИD | 5 | 1,3-DICHLOROBENZENE | ND | 5 | | BENZENE | ND | 5 | 1,4-DICHLOROBENZENE | ND | 5 | | TRICHLOROETHENE | ND | 5 | n-BUTYLBENZENE | ND | 5 | | 1,2-DICHLOROPROPANE | ND | 5 | 1,2-DICHLOROBENZENE | ND | 5 | | BROMODICHLOROMETHANE | ND | 5 | 1,2-DIBROMO-3-CHLOROPROPANE | ND | 25 | | DIBROMOMETHANE | ND | 5 | 1,2,4-TRICHLOROBENZENE | ND | 5 | | 4-METHYL-2-PENTANONE (MIBK) | ND | 5 | HEXACHLOROBUTADIENE | ND | 5 | | cis-1,3-DICHLOROPROPENE | ND | 5 | NAPHTHALENE | ND | 5 | | TOLUENE | ND | 5 | 1,2,3-TRICHLOROBENZENE | ND | 5 | | trans-1,3-DICHLOROPROPENE | ND | 5 | SURROGATE | % REC. | LIMITS | | 1,1,2-TRICHLOROETHANE | ND | 5 | 1,2-DICHLOROETHANE - D4 | 98.9 | 70-121 | | 2-HEXANONE (MBK) | ND | 10 | TOLUENE - D8 | 96.9 | 81-117 | | 1,3-DICHLOROPROPANE | ND | 5 | 4-BROMOFLUOROBENZENE | 106 | 74-121 | COMMENTS: REVIEWED BY: Walsh #### EPA METHOD 8260 ANALYSIS FOR VOLATILE ORGANICS BY GC/MS CONCENTRATION (PPB-ug/kg - Solid) PROJECT: MACDERMID - WATERBURY, CT FILE NO.: 41462 PROJECT MGR.: T. CARR SAMPLE ID: GZ-8, 0-2' DATE SAMPLED: 2/15/95 MATRIX: SOLID DATE TESTED: 2/22/95 LABORATORY #: C2162 **DILUTION FACTOR:** 1 | TARGET COMPOUND LIST | | QUANT. | TARGET COMPOUND LIST | | QUANT. | |--------------------------------|-------|--------|-----------------------------|--------|--------| | 8260 COMPOUNDS | CONC. | LIMIT | 8260 COMPOUNDS: | CONC. | LIMIT | | DICHLORODIFLUOROMETHANE | ND | 10 | TETRACHLOROETHENE | ND | 5 | | CHLOROMETHANE | ND | 10 | DIBROMOCHLOROMETHANE | ND | 5 | | VINYL CHLORIDE | ND | 10 | 1,2-DIBROMOETHANE (EDB) | ND | 10 | | BROMOMETHANE | ND | 10 | CHLOROBENZENE | ND | 5 | | CHLOROETHANE | ND | 10 | 1,1,1,2-TETRACHLOROETHANE | ND | 5 | | TRICHLOROFLUOROMETHANE | ND | 20 | ETHYL BENZENE | ND | 5 | | ACETONE | ND | 125 | m&p-XYLENES | ND | 5 | | 1,1-DICHLOROETHENE | ND | 5 | o-XYLENE | ND | 5 | | METHYLENE CHLORIDE | ND | 5 | STYRENE | ND | 5 | | CARBON DISULFIDE | ND | 10 | BROMOFORM | ND | 10 | | METHYL tert-BUTYL ETHER (MtBE) | ND | 5 | ISOPROPYLBENZENE | ND | 5 | | trans-1,2-DICHLOROETHENE | ND | 5 | 1,1,2,2-TETRACHLOROETHANE | ND | 5 | | 1,1-DICHLOROETHANE | ND | 5 | 1,2,3-TRICHLOROPROPANE | ND | 5 | | VINYL ACETATE | ND | 25 | BROMOBENZENE | ND | 5 | | 2-BUTANONE (MEK) | ND | 125 | n-PROPYLBENZENE | ND | 5 | | 2,2-DICHLOROPROPANE | ND | 5 | 2-CHLOROTOLUENE | ND | 5 | | cis-1,2-DICHLOROETHENE | ND | 5 | 1,3,5-TRIMETHYLBENZENE | ND | 5 | | CHLOROFORM | ND | 5 | 4-CHLOROTOLUENE | ND | 5 | | BROMOCHLOROMETHANE | ND | 5 | tert-BUTYLBENZENE | ND | 5 | | 1,1,1-TRICHLOROETHANE | ND | 5 | 1,2,4-TRIMETHYLBENZENE | ND | 5 | | 1,1-DICHLOROPROPENE | ND | 5 | sec-BUTYLBENZENE | ND | 5 | | CARBON TETRACHLORIDE | ND | 5 | p-ISOPROPYLTOLUENE | ND | 5 | | 1,2-DICHLOROETHANE | ND | 5 | 1,3-DICHLOROBENZENE | ND | 5 | | BENZENE | ND | 5 | 1,4-DICHLOROBENZENE | ND | 5 | | TRICHLOROETHENE | ND | 5 | n-BUTYLBENZENE | ND | 5 | | 1,2-DICHLOROPROPANE | ND | 5 | 1,2-DICHLOROBENZENE | ND | 5 | | BROMODICHLOROMETHANE | ND | 5 | 1,2-DIBROMO-3-CHLOROPROPANE | ND | 25 | | DIBROMOMETHANE | ND | 5 | 1,2,4-TRICHLOROBENZENE | ND | 5 | | 4-METHYL-2-PENTANONE (MiBK) | ND | 5 | HEXACHLOROBUTADIENE | ND | 5 | | cis-1,3-DICHLOROPROPENE | ND | 5 | NAPHTHALENE | ND | 5 | | TOLUENE | ND | 5 | 1,2,3-TRICHLOROBENZENE | ND | 5 | | trans-1,3-DICHLOROPROPENE | ND | 5 | SURROGATE | % REC. | LIMITS | | 1,1,2-TRICHLOROETHANE | ND | 5 | 1,2-DICHLOROETHANE - D4 | 98.1 | 70-121 | | 2-HEXANONE (MBK) | ND | 10 | TOLUENE - D8 | 97.2 | 81-117 | | 1,3-DICHLOROPROPANE | ND | 5 | 4-BROMOFLUOROBENZENE | 101 | 74-121 | COMMENTS: ANALYZED BY: REVIEWED BY: Healel #### EPA METHOD 8260 ANALYSIS FOR VOLATILE ORGANICS BY GC/MS CONCENTRATION (PPB-ug/kg - Solid) PROJECT: MACDERMID - WATERBURY, CT FILE NO.: 41462 PROJECT MGR.: T. CARR SAMPLE ID: GZ-8, 25-27' DATE SAMPLED: 2/15/95 | MATRIX: SOLID
LABORATORY #: C2163 | | | DATE TESTED: 2/22 DILUTION FACTOR: 1 | 2/95
 | | |--|-------|--------|---|----------|--------| | TARGET COMPOUND LIST
8260 COMPOUNDS | CONC. | QUANT. | TARGET COMPOUND LIST
8260 COMPOUNDS: | CONC. | QUANT. | | | | | | 1 | | | DICHLORODIFLUOROMETHANE | ND | 10 | TETRACHLOROETHENE | ND | 5 | | CHLOROMETHANE | ND | 10 | DIBROMOCHLOROMETHANE | ND | 5 | | VINYL CHLORIDE | ND | 10 | 1,2-DIBROMOETHANE (EDB) | ND | 10 | | BROMOMETHANE | ND | 10 | CHLOROBENZENE | ND | 5 | | CHLOROETHANE | ND | 10 | 1,1,1,2-TETRACHLOROETHANE | ND | 5 | | TRICHLOROFLUOROMETHANE | ND | 20 | ETHYL BENZENE | ND | 5 | | ACETONE | ND | 125 | m&p-XYLENES | ND | 5 | | 1 1- DICHI ODOETHENE | ND | | • WIENE | ND | اء | | | | 1 | 188 | | | |--------------------------------|----|-----|-----------------------------|--------|--------| | DICHLORODIFLUOROMETHANE | ND | 10 | TETRACHLOROETHENE | ND | 5 | | CHLOROMETHANE | ND | 10 | DIBROMOCHLOROMETHANE | ND | 5 | | VINYL CHLORIDE | ND | 10 | 1,2-DIBROMOETHANE (EDB) | ND | 10 | | BROMOMETHANE | ND | 10 | CHLOROBENZENE | ND | 5 | | CHLOROETHANE | ND | 10 | 1,1,1,2-TETRACHLOROETHANE | ND | 5 | | TRICHLOROFLUOROMETHANE | ND | 20 | ETHYL BENZENE | ND | 5 | | ACETONE | ND | 125 | m&p-XYLENES | ND | 5 | | 1,1-DICHLOROETHENE | ND | 5 | o-XYLENE | ND | 5 | | METHYLENE CHLORIDE | ND | 5 | STYRENE | ND | 5 | | CARBON DISULFIDE | ND | 10 | BROMOFORM | ND | 10 | | METHYL tert-BUTYL ETHER (MtBE) | ND | 5 | ISOPROPYLBENZENE | ND | 5 | | trans-1,2-DICHLOROETHENE | ND | 5 | 1,1,2,2-TETRACHLOROETHANE | ND | 5 | | 1,1-DICHLOROETHANE | ND | 5 | 1,2,3-TRICHLOROPROPANE | ND | 5 | | VINYL ACETATE | ND | 25 | BROMOBENZENE | ND | 5 | | 2-BUTANONE (MEK) | ND | 125 | n-PROPYLBENZENE | ND | 5 | | 2,2-DICHLOROPROPANE | ND | 5 | 2-CHLOROTOLUENE | ND | 5 | | cis-1,2-DICHLOROETHENE | ND | 5 | 1,3,5-TRIMETHYLBENZENE | ND | 5 | | CHLOROFORM | ND | 5 | 4-CHLOROTOLUENE | ND | 5 | | BROMOCHLOROMETHANE | ND | 5 | tert-BUTYLBENZENE | ND | 5 | | 1,1,1-TRICHLOROETHANE | ND | 5 | 1,2,4-TRIMETHYLBENZENE | ND | 5 | | 1,1-DICHLOROPROPENE | ND | 5 | sec-BUTYLBENZENE | ND | 5 | | CARBON TETRACHLORIDE | ND | 5 | p-ISOPROPYLTOLUENE | ND | 5 | | 1,2-DICHLOROETHANE | ND | 5 | 1,3-DICHLOROBENZENE | ND | 5 | | BENZENE | ND | 5 | 1,4-DICHLOROBENZENE | ND | 5 | | TRICHLOROETHENE | ND | 5 | n-BUTYLBENZENE | ND | 5 | | 1,2-DICHLOROPROPANE | ND | 5 | 1,2-DICHLOROBENZENE | ND | 5 | | BROMODICHLOROMETHANE | ND | 5 | 1,2-DIBROMO-3-CHLOROPROPANE | ND | 25 | | DIBROMOMETHANE | ND | 5 | 1,2,4-TRICHLOROBENZENE | ND | 5 | | 4-METHYL-2-PENTANONE (MIBK) | ND | 5 | HEXACHLOROBUTADIENE | ND | 5 | | cis-1,3-DICHLOROPROPENE | ND | 5 | NAPHTHALENE | ND | 5 | | TOLUENE | ND | 5 |
1,2,3-TRICHLOROBENZENE_ | ND | 5 | | trans-1,3-DICHLOROPROPENE | ND | 5 | SURROGATE | % REC. | LIMITS | | 1,1,2-TRICHLOROETHANE | ND | 5 | 1,2-DICHLOROETHANE - D4 | 102 | 70-121 | | 2-HEXANONE (MBK) | ND | 10 | TOLUENE - D8 | 98.0 | 81-117 | | 1,3~DICHLOROPROPANE | ND | 5 | 4-BROMOFLUOROBENZENE | 105 | 74-121 | COMMENTS: REVIEWED BY: Fualsh _ #### EPA METHOD 8260 ANALYSIS FOR VOLATILE ORGANICS BY GC/MS CONCENTRATION (PPB-ug/kg - Solid) PROJECT: MACDERMID - WATERBURY, CT FILE NO.: 41462 PROJECT MGR.: T. CARR SAMPLE ID: GZ-9, 10-12' DATE SAMPLED: 2/16/95 MATRIX: SOLID DATE TESTED: 2/22/95 LABORATORY #: C2164 **DILUTION FACTOR:** 1 | | | QUANT. | · | TARGET COMPOUND LIST | | QUANT. | |--------------------------------|-------|--------|---|-----------------------------|--------|--------| | 8260 COMPOUNDS | CONC. | LIMIT | | 8260 COMPOUNDS: | CONC. | LIMIT | | DICHLORODIFLUOROMETHANE | ND | 10 | | TETRACHLOROETHENE | ND | 5 | | CHLOROMETHANE | ND | 10 | | DIBROMOCHLOROMETHANE | ND | 5 | | VINYL CHLORIDE | ND | 10 | | 1,2-DIBROMOETHANE (EDB) | ND | 10 | | BROMOMETHANE | ND | 10 | | CHLOROBENZENE | ND | 5 | | CHLOROETHANE | ND | 10 | | 1,1,1,2-TETRACHLOROETHANE | ND | 5 | | TRICHLOROFLUOROMETHANE | ND | 20 | | ETHYL BENZENE | ND | 5 | | ACETONE | ND | 125 | | m&p-XYLENES | ND | 5 | | 1,1-DICHLOROETHENE | ND - | 5 | | o-XYLENE | ND | 5 | | METHYLENE CHLORIDE | ND | 5 | | STYRENE | ND | 5 | | CARBON DISULFIDE | ND | 10 | | вромогори | ND | 10 | | METHYL tert-BUTYL ETHER (MtBE) | ND | 5 | | ISOPROPYLBENZENE | ND | 5 | | trans-1,2-DICHLOROETHENE | ND | 5 | | 1,1,2,2-TETRACHLOROETHANE | ND | 5 | | 1,1-DICHLOROETHANE | ND | 5 | | 1,2,3-TRICHLOROPROPANE | ND | 5 | | VINYL ACETATE | ND | 25 | | BROMOBENZENE | ND | 5 | | 2-BUTANONE (MEK) | ND | 125 | | n-PROPYLBENZENE | ND | 5 | | 2,2-DICHLOROPROPANE | ND | 5 | | 2-CHLOROTOLUENE | ND | 5 | | cis-1,2-DICHLOROETHENE | ND | 5 | | 1,3,5-TRIMETHYLBENZENE | ND | 5 | | CHLOROFORM | ND | 5 | | 4-CHLOROTOLUENE | ND | 5 | | BROMOCHLOROMETHANE | ND | 5 | | tert-BUTYLBENZENE | ND | 5 | | 1,1,1-TRICHLOROETHANE | ND | 5 | | 1,2,4-TRIMETHYLBENZENE | ND | 5 | | 1,1-DICHLOROPROPENE | ND | 5 | | sec-BUTYLBENZENE | ND | 5 | | CARBON TETRACHLORIDE | ND | 5 | | p-ISOPROPYLTOLUENE | ND | 5 | | 1,2-DICHLOROETHANE | ND | 5 | | 1,3-DICHLOROBENZENE | ND | 5 | | BENZENE | ND | 5 | | 1,4-DICHLOROBENZENE | ND | 5 | | TRICHLOROETHENE | ND | 5 | | n-BUTYLBENZENE | ND | 5 | | 1,2-DICHLOROPROPANE | ND | 5 | | 1,2-DICHLOROBENZENE | ND | 5 | | BROMODICHLOROMETHANE | ND | 5 | | 1,2-DIBROMO-3-CHLOROPROPANE | ND | 25 | | DIBROMOMETHANE | ND | 5 | | 1,2,4-TRICHLOROBENZENE | ND | 5 | | 4-METHYL-2-PENTANONE (MiBK) | ND . | 5 | | HEXACHLOROBUTADIENE | ND | 5 | | cis-1,3-DICHLOROPROPENE | ND | 5 | | NAPHTHALENE | ND | 5 | | TOLUENE | ND | 5 | | 1,2,3-TRICHLOROBENZENE | ND | 5 | | trans-1,3-DICHLOROPROPENE | ND | 5 | | SURROGATE | % REC. | LIMITS | | 1,1,2-TRICHLOROETHANE | ND | 5 | | 1,2-DICHLOROETHANE - D4 | 95.9 | 70-121 | | 2-HEXANONE (MBK) | ND | 10 | | TOLUENE - D8 | 97.8 | 81-117 | | 1,3-DICHLOROPROPANE | ND | 5 | | 4-BROMOFLUOROBENZENE | 102 | 74-121 | COMMENTS: ANALYZED BY: REVIEWED BY: Hall #### EPA METHOD 8260 ANALYSIS FOR VOLATILE ORGANICS BY GC/MS CONCENTRATION (PPB-ug/kg - Solid) PROJECT: MACDERMID - WATERBURY, CT FILE NO.: 41462 PROJECT MGR.: T. CARR SAMPLE ID: GZ-10, 5-7' DATE SAMPLED: 2/16/95 MATRIX: SOLID DATE TESTED: 2/22/95 LABORATORY #: C2165 **DILUTION FACTOR:** 1 | TARGET COMPOUND LIST | | QUANT. | | TARGET COMPOUND LIST | | QUANT. | |--------------------------------|-------|--------|-----|----------------------------|--------|--------| | 8260 COMPOUNDS | CONC. | LIMIT | | 8260 COMPOUNDS: | CONC. | LIMIT | | DICHLORODIFLUOROMETHANE | ND | 10 | - | TETRACHLOROETHENE | ND | 5 | | CHLOROMETHANE | ND | 10 | Mı | DIBROMOCHLOROMETHANE | ND | 5 | | VINYL CHLORIDE | ND | 10 | | 1,2-DIBROMOETHANE (EDB) | ND | 10 | | BROMOMETHANE | В | 10 | | CHLOROBENZENE | ND | 5 | | CHLOROETHANE | ND | 10 | | 1,1,1,2-TETRACHLOROETHANE | ND | 5 | | TRICHLOROFLUOROMETHANE | ND | 20 | E | ETHYL BENZENE | ND | 5 | | ACETONE | ND | 125 | ı | m&p-XYLENES | ND | 5 | | 1,1-DICHLOROETHENE | ND | 5 | | o-XYLENE | ND | 5 | | METHYLENE CHLORIDE | ND | 5 | 1 | STYRENE | ND | 5 | | CARBON DISULFIDE | ND | 10 | ■ E | BROMOFORM | ND | 10 | | METHYL tert-BUTYL ETHER (MtBE) | ND | 5 | ∭I | SOPROPYLBENZENE | ND | 5 | | trans-1,2-DICHLOROETHENE | ND | 5 | 1 | 1,1,2,2-TETRACHLOROETHANE | ND | 5 | | 1,1-DICHLOROETHANE | ND | 5 | 1 | 1,2,3-TRICHLOROPROPANE | ND | 5 | | VINYL ACETATE | ND | 25 | E | BROMOBENZENE | ND | 5 | | 2-BUTANONE (MEK) | ND | 125 | r | n-PROPYLBENZENE | ND | 5 | | 2,2-DICHLOROPROPANE | ND | 5 | 2 | 2-CHLOROTOLUENE | ND | 5 | | cis-1,2-DICHLOROETHENE | ND | 5 | 1 | 1,3,5-TRIMETHYLBENZENE | ND | 5 | | CHLOROFORM | ND | 5 | 4 | 4-CHLOROTOLUENE | ND | 5 | | BROMOCHLOROMETHANE | ND | 5 | t | ert-BUTYLBENZENE | ND | 5 | | 1,1,1-TRICHLOROETHANE | ND | 5 | 1 | 1,2,4-TRIMETHYLBENZENE | ND | 5 | | 1,1-DICHLOROPROPENE | ND | 5 | s | sec-BUTYLBENZENE | ND | 5 | | CARBON TETRACHLORIDE | ND | 5 | p | -ISOPROPYLTOLUENE | ND | 5 | | 1,2-DICHLOROETHANE | ND | . 5 | 1 | 1,3-DICHLOROBENZENE | ND. | 5 | | BENZENE | ND | 5 | 1 | ,4-DICHLOROBENZENE | ND | 5 | | TRICHLOROETHENE | ND | 5 | n | n-BUTYLBENZENE | ND | 5 | | 1,2-DICHLOROPROPANE | ND | 5 | 1 | ,2-DICHLOROBENZENE | ND | 5 | | BROMODICHLOROMETHANE | ND | 5 | 1 | ,2-DIBROMO-3-CHLOROPROPANE | ND | 25 | | DIBROMOMETHANE | ND | 5 | 1 | ,2,4-TRICHLOROBENZENE | ND | 5 | | 4-METHYL-2-PENTANONE (MIBK) | ND | 5 | ŀ | 1EXACHLOROBUTADIENE | ND | 5 | | cis-1,3-DICHLOROPROPENE | ND | 5 | ١ | NAPHTHALENE | ND | 5 | | TOLUENE | ND | 5 | 1 | ,2,3-TRICHLOROBENZENE | ND | 5 | | trans-1,3-DICHLOROPROPENE | ND | 5 | | SURROGATE | % REC. | LIMITS | | 1,1,2-TRICHLOROETHANE | ND | 5 | 1 | ,2-DICHLOROETHANE - D4 | 97.8 | 70-121 | | 2-HEXANONE (MBK) | ND | 10 | Т | OLUENE - D8 | 96.9 | 81-117 | | 1,3-DICHLOROPROPANE | ND | 5 | 4 | -BROMOFLUOROBENZENE | 105 | 74-121 | COMMENTS: ANALYZED BY: (REVIEWED BY: Hall 10 #### EPA METHOD 8260 ANALYSIS FOR VOLATILE ORGANICS BY GC/MS CONCENTRATION (PPB-ug/kg - Solid) PROJECT: MACDERMID - WATERBURY, CT FILE NO .: 41462 PROJECT MGR.: T. CARR SAMPLE ID: GZ-11, 10-12' DATE SAMPLED: 2/16/95 MATRIX: SOLID DATE TESTED: 2/23/95 LABORATORY #: C2170 **DILUTION FACTOR:** 1 | p | | | | | | | | | |--------------------------------|-------|-------|--------|----------------------------|--------|--------|--|--| | TARGET COMPOUND LIST QUAI | | | | TARGET COMPOUND LIST | | QUANT. | | | | 8260 COMPOUNDS | CONC. | LIMIT | 11 | 8260 COMPOUNDS: | CONC. | LIMIT | | | | DICHLORODIFLUOROMETHANE | ND | 10 | T | TETRACHLOROETHENE | ND | 5 | | | | CHLOROMETHANE | ND | 10 | | DIBROMOCHLOROMETHANE | ND | 5 | | | | VINYL CHLORIDE | ND | 10 | 1 | ,2-DIBROMOETHANE (EDB) | ND | 10 | | | | BROMOMETHANE | ND | 10 | | CHLOROBENZENE | ND | 5 | | | | CHLOROETHANE | ND | 10 | 1 | ,1,1,2-TETRACHLOROETHANE | DN | 5 | | | | TRICHLOROFLUOROMETHANE | ND | 20 | E | ETHYL BENZENE | ND | 5 | | | | ACETONE | ND | 125 | Пп | n&p-XYLENES | ND | 5 | | | | 1,1-DICHLOROETHENE | ND | 5 | o | -XYLENE | ND | 5 | | | | METHYLENE CHLORIDE | 'ND | 5 | s | STYRENE | ND | 5 | | | | CARBON DISULFIDE | ND | 10 | В | BROMOFORM | ND | 10 | | | | METHYL tert-BUTYL ETHER (MtBE) | ND | 5 | 18 | SOPROPYLBENZENE | ND | 5 | | | | trans-1,2-DICHLOROETHENE | ND | 5 | 1 | ,1,2,2-TETRACHLOROETHANE | ND | 5 | | | | 1,1-DICHLOROETHANE | ND | 5 | 1 | ,2,3-TRICHLOROPROPANE | ND | 5 | | | | VINYL ACETATE | ND | 25 | В | ROMOBENZENE | ND | 5 | | | | 2-BUTANONE (MEK) | ND | 125 | n | -PROPYLBENZENE | ND | 5 | | | | 2,2-DICHLOROPROPANE | ND | 5 | 2 | -CHLOROTOLUENE | ND | 5 | | | | cis-1,2-DICHLOROETHENE | ND | 5 | 1 | ,3,5-TRIMETHYLBENZENE | ND | 5 | | | | CHLOROFORM | ND | 5 | 4 | -CHLOROTOLUENE | ND | 5 | | | | BROMOCHLOROMETHANE | ND | 5 | te | ert-BUTYLBENZENE | ND | 5 | | | | 1,1,1-TRICHLOROETHANE | ND | 5 | 1 | ,2,4-TRIMETHYLBENZENE | ND | 5 | | | | 1,1-DICHLOROPROPENE | ND | 5 | S | ec-BUTYLBENZENE | ND | 5 | | | | CARBON TETRACHLORIDE | ND | 5 | p | -ISOPROPYLTOLUENE | ND | 5 | | | | 1,2-DICHLOROETHANE | ND | 5 | 1, | ,3-DICHLOROBENZENE | ND | 5 | | | | BENZENE | ND | 5 | 1, | ,4-DICHLOROBENZENE | ND | 5 | | | | TRICHLOROETHENE | ND | 5 | 1888 | -BUTYLBENZENE | ND | 5 | | | | 1,2-DICHLOROPROPANE | ND | 5 | 1881 · | ,2-DICHLOROBENZENE | ND | 5 | | | | BROMODICHLOROMETHANE | ND | 5 | 1, | ,2-DIBROMO-3-CHLOROPROPANE | ND | 25 | | | | DIBROMOMETHANE | ND | 5 | 1, | ,2,4~TRICHLOROBENZENE | ND | 5 | | | | 4-METHYL-2-PENTANONE (MIBK) | ND | 5 | Н | EXACHLOROBUTADIENE | ND | 5 | | | | cis-1,3-DICHLOROPROPENE | ND | 5 | N | APHTHALENE | ND | 5 | | | | TOLUENE | ND | 5 | 1, | ,2,3-TRICHLOROBENZENE | ND | 5 | | | | trans-1,3-DICHLOROPROPENE | ND | 5 | | SURROGATE | % REC. | LIMITS | | | | 1,1,2-TRICHLOROETHANE | ND | 5 | 1, | 2-DICHLOROETHANE - D4 | 101 | 70-121 | | | | 2-HEXANONE (MBK) | ND | 10 | ĮΤ | OLUENE - D8 | 98.8 | 81-117 | | | | 1,3-DICHLOROPROPANE | ND | _5 | 4- | -BROMOFLUOROBENZENE | 101 | 74-121 | | | COMMENTS: ANALYZED BY: **REVIEWED BY:** Hubble #### GZA GeoEnvironmental, Inc. Environmental Chemistry Laboratory 320 Needham St., Newton Upper Falls, MA 02164 LABORATORY ID: MA092 41462.XLs METALS ANALYSIS - TCLP FINAL DATA ~ ROJECT: MacDermid Inc. ROJECT MGR.: T. Carr JOB NO: 41462 MATRIX: (TCLP extract) GROUP: R-8 **UNITS:** mg/L (ppm) SAMPLE ID: GZ-1/S-1 GZ-2/S-2 GZ-3/S-1 GZ-5/S-1 BATCH NO.: 01041,04295 DATE SAMPLED: 1/12-13/95 DATE PREPARED: 1/24/95 DATE ANALYZED: 1/26,2/1/95 | Analyte | METHOD* | CONC. | D.L. | CONC. | D.L. | CONC. | D.L. | CONC. | D.L. | |---------------|---------|-------|--------|-------|--------|-------|--------|-------|--------| | Silver (Ag) | 6010 | BDL | 0.007 | BDL | 0.007 | BDL | 0.007 | BDL | 0.007 | | Arsenic (As) | 6010 | BDL | 0.100 | BDL | 0.100 | BDL | 0.100 | BDL | 0.100 | | Barium (Ba) | 6010 | 0.395 | 0.003 | 0.538 | 0.003 | 0.714 | 0.003 | 0.197 | 0.003 | | Cadmium (Cd) | 6010 | BDL | 0.004 | 0.032 |
0.004 | BDL | 0.004 | BDL | 0.004 | | ıromium (Cr) | 6010 | 0.084 | 0.005 | 0.017 | 0.005 | 0.038 | 0.005 | 0.014 | 0.005 | | '∟ead (Pb) | 6010 | 0.068 | 0.003 | 0.100 | 0.003 | 1.08 | 0.003 | 0.043 | 0.003 | | Selenium (Se) | 6010 | BDL | 0.100 | BDL | 0.100 | BDL | 0.100 | BDL | 0.100 | | Mercury (Hg) | 7471 | BDL | 0.0002 | BDL | 0.0002 | BDL | 0.0002 | BDL | 0.0002 | | Copper (Cu) | 6010 | BDL | 0.020 | 8.15 | 0.020 | 1.04 | 0.020 | BDL | 0.020 | | Zinc (Zn) | 6010 | 0.102 | 0.020 | 2.84 | 0.020 | 0.351 | 0.020 | 0.049 | 0.020 | | Nickel (Ni) | 6010 | BDL | 0.050 | BDL | 0.050 | 0.052 | 0.050 | BDL | 0.050 | **BDL=BELOW DETECTION LIMIT** N/A = NOT ANALYZED *DENOTES EPA METHODS ANALYZED BY: REVIEWED BY: # GZA GeoEnvironmental, Inc. Environmental Chemistry Laboratory 320 Needham St., Newton Upper Falls, MA 02164 LABORATORY ID: MA092 41462.xls METALS ANALYSIS - TCLP # FINAL DATA **ROJECT:** MacDermid Inc. rROJECT MGR.: T. Carr JOB NO: 41462 MATRIX: (TCLP extract) GROUP: R-8 UNITS: mg/L (ppm) SAMPLE ID: GZ-6/S-1 BATCH NO.: 01041,04295 DATE SAMPLED: 1/12-13/95 DATE PREPARED: 1/24/95 DATE ANALYZED: 1/26,2/1/95 | Analyte | METHOD* | CONC. | D.L. | |---------------|---------|-------|--------| | Silver (Ag) | 6010 | BDL | 0.007 | | Arsenic (As) | 6010 | BDL | 0.100 | | Barium (Ba) | 6010 | 0.324 | 0.003 | | Cadmium (Cd) | 6010 | BDL | 0.004 | | hromium (Cr) | 6010 | 0.026 | 0.005 | | Lead (Pb) | 6010 | 0.196 | 0.003 | | Selenium (Se) | 6010 | BDL | 0.100 | | Mercury (Hg) | 7471 | BDL | 0.0002 | | Copper (Cu) | 6010 | 0.149 | 0.020 | | Zinc (Zn) | 6010 | 0.131 | 0.020 | | Nickel (Ni) | 6010 | BDL | 0.050 | **BDL=BELOW DETECTION LIMIT** N/A = NOT ANALYZED*DENOTES EPA METHODS ANALYZED BY: REVIEWED BY: # , GZA GeoEnvironmental, Inc. Environmental Chemistry Laboratory 320 Needham St., Newton Upper Falls, MA 02164 LABORATORY ID: MA092 41462A.XLS METALS ANALYSIS - TCLP # FINAL DATA ROJECT: MacDermid PROJECT MGR.: T. Carr JOB NO: 41462 MATRIX: AQUEOUS (TCLP extract) GROUP: R-8 UNITS: mg/L (ppm) SAMPLE ID: GZ-7 **GZ-8** S-6 **GZ-8 S-1** BATCH NO.: 02037,03895 DATE SAMPLED: 2/15-16/95 DATE PREPARED: 2/24/95 DATE ANALYZED: 2/27-28,3/30/95/95 | Analyte | METHOD* | CONC. D.L. CONC. D.L. CONC. D.L. | |---------------|---------|--| | Silver (Ag) | 6010 | BDL 0.007 BDL 0.007 0.013 0.007 | | Arsenic (As) | 6010 | BDL 0.005 BDL 0.005 BDL 0.005 | | Barium (Ba) | 6010 | 0.313 0.003 0.323 0.003 0.439 0.003 | | Cadmium (Cd) | 6010 | BDL 0.004 BDL 0.004 0.013 0.004 | | ıromium (Cr) | 6010 | 0.057 0.005 0.154 0.005 0.132 0.005 | | Lead (Pb) | 6010 | 0.028 0.003 0.064 0.003 0.052 0.003 | | Selenium (Se) | 6010 | BDL 0.005 BDL 0.005 BDL 0.005 | | Mercury (Hg) | 7471 | BDL 0.0002 BDL 0.0002 BDL 0.0002 | | Copper (Cu) | 6010 | BDL 0.020 0.905 0.020 1.39 0.020 | | Zinc (Zn) | 6010 | 0.134 0.020 0.198 0.020 0.456 0.020 | | Nickel (Ni) | 6010 | BDL 0.054 BDL 0.054 0.142 0.054 | **BDL=BELOW DETECTION LIMIT** N/A = NOT ANALYZED*DENOTES EPA METHODS ANALYZED BY: REVIEWED BY: # GZA GeoEnvironmental, Inc. Environmental Chemistry Laboratory 320 Needham St., Newton Upper Falls, MA 02164 LABORATORY ID: MA092 41462A.XLS METALS ANALYSIS - TCLP GZ-10 **GZ-11** FINAL DATA **ROJECT:** MacDermid rROJECT MGR.: T. Carr JOB NO: 41462 MATRIX: AQUEOUS (TCLP extract) GROUP: R-8 UNITS: mg/L (ppm) SAMPLE ID: BATCH NO.: 02037,03895 DATE SAMPLED: DATE PREPARED: 2/24/95 2/15-16/95 DATE ANALYZED: 2/27-28,3/30/95/95 | Analyte | METHOD* | CONC. D.L. CONC. D.L. CONC. D.L. | |---------------|---------|-------------------------------------| | Silver (Ag) | 6010 | BDL 0.007 BDL 0.007 BDL 0.007 | | Arsenic (As) | 6010 | BDL 0.005 BDL 0.005 BDL 0.005 | | Barium (Ba) | 6010 | 0.785 0.003 0.341 0.003 0.655 0.003 | | Cadmium (Cd) | 6010 | 0.015 0.004 0.011 0.004 0.018 0.004 | | romium (Cr) | 6010 | 0.642 0.005 0.036 0.005 0.155 0.005 | | Lead (Pb) | 6010 | 0.378 | | Selenium (Se) | 6010 | BDL 0.005 BDL 0.005 BDL 0.005 | | Mercury (Hg) | 7471 | BDL 0.0002 BDL 0.0002 BDL 0.0002 | | Copper (Cu) | 6010 | 3.36 0.020 0.508 0.020 9.12 0.020 | | Zinc (Zn) | 6010 | 3.29 0.020 0.215 0.020 1.82 0.020 | | Nickel (Ni) | 6010 | 0.817 0.054 BDL 0.054 1.71 0.054 | DL=BELOW DETECTION LIMIT = NOT ANALYZED OTES EPA METHODS ANALYZED BY: REVIEWED BY: 15 # GZA GEOENVIRONMENTAL, INC. ENVIRONMENTAL CHEMISTRY LABORATORY 320 NEEDHAM STREET, NEWTON UPPER FALLS, MA 02164 MASSACHUSETTS LABORATORY I.D. NO. MA092 # EPA METHOD 8240/8260 ANALYSIS PURGEABLES IN AQUEOUS AND/OR SOLID MATRIX # QUALITY CONTROL DATE: 1/18/95 - GILBERT # AQUEOUS | | MATRIX SPIKE | ACCEPTANCE | DUPLICATE SPIKE | ACCEPTANCE | |--------------------|--------------|------------|-----------------|------------| | COMPOUND | RECOVERY (%) | LIMITS (%) | DIFFERENCE (%) | LIMITS (%) | | 1,1-DICHLOROETHENE | | 60-120 | | 20 | | TRICHLORETHENE | | 70–130 | | 20 | | TOLUENE | | 70–125 | | 20 | # SOLID | | MATRIX SPIKE | ACCEPTANCE | DUPLICATE SPIKE | ACCEPTANCE | |--------------------|--------------|------------|-----------------|------------| | COMPOUND | RECOVERY (%) | LIMITS (%) | DIFFERENCE (%) | LIMITS (%) | | 1,1-DICHLOROETHENE | 105 | 60-120 | 2.90 | 35 | | BENZENE | 114 | 65–130 | 0.88 | 35 | | TOLUENE | 112 | 65–125 | 0.00 | 35 | # METHOD BLANK LABORATORY NO.: C1924 | TOTAL COM | IPOUNDS DE | TECTED | ND | |-----------|------------|--------|----| | SURROGATES | RECOVERY
(%) | ACCEPTANCE
LIMITS (%) | |-----------------------|-----------------|--------------------------| | 1,2-DICHLOROETHANE-D4 | 100 | 76–114 | | TOLUENE-D8 | 102 | 88-110 | | 4-BROMOFLUOROBENZENE | 92.9 | 86-115 | # GZA GEOENVIRONMENTAL, INC. ENVIRONMENTAL CHEMISTRY LABORATORY 320 NEEDHAM STREET, NEWTON UPPER FALLS, MA 02164 MASSACHUSETTS LABORATORY I.D. NO. MA092 # EPA METHOD 8240/8260 ANALYSIS PURGEABLES IN AQUEOUS AND/OR SOLID MATRIX # QUALITY CONTROL DATE: 2/22/95 - GILBERT # AQUEOUS | | MATRIX SPIKE | ACCEPTANCE | DUPLICATE SPIKE | ACCEPTANCE | |--------------------|--------------|------------|-----------------|------------| | COMPOUND | RECOVERY (%) | LIMITS (%) | DIFFERENCE (%) | LIMITS (%) | | 1,1-DICHLOROETHENE | | 60-120 | | 20 | | TRICHLORETHENE | | 70–130 | | 20 | | TOLUENE | | 70-125 | | 20 | # SOLID | | MATRIX SPIKE | ACCEPTANCE | DUPLICATE SPIKE | ACCEPTANCE | |--------------------|--------------|------------|-----------------|------------| | COMPOUND | RECOVERY (%) | LIMITS (%) | DIFFERENCE (%) | LIMITS (%) | | 1,1-DICHLOROETHENE | 99.9 | 60-120 | 7.26 | 35 | | TRICHLORETHENE | 109 | 65–130 | 3.74 | 35 | | TOLUENE | 105 | 65–125 | 5.68 | 35 | # METHOD BLANK LABORATORY NO.: C2157 | TOTAL C | OMPOUNDS DET | ECTED | ND | |---------|--------------|-------|----| | | RECOVERY | ACCEPTANCE | |-----------------------|----------|------------| | SURROGATES | (%) | LIMITS (%) | | 1,2-DICHLOROETHANE-D4 | 91.6 | 76-114 | | TOLUENE-D8 | 94.6 | 88-110 | | 4-BROMOFLUOROBENZENE | 98.8 | 86-115 | | | | | | | | | | ps | | \mathcal{O} | 19 | | In | , 9 | 4 | <u> </u> | | | | |-----------------|---|--|--------------|-----------|----------|-----|------|----|--|---------------|----------------------------|------------------------------|--|--|------------------------------|------------------------------|-------------------------|---------------------------------------|--| | | _ | Note
| 1/3 | | | | | | | | | | olicy. | ž | 21 | . 'n | | | | | | 0 4 5 | Total
of
Cont. | - | | | 4 | 44 | | | | | | DEP P | olm | 31 | 13 | | | | | | | | | | - | | | | | | | | Mass- | g | | , ,3 | | | OF | | | , <u>01</u> | | | | | | | | | | | | e with | 35 | Selve | 7 | | | | | 1 | | | | | | | | | | | | | rdancı | الم الم | N | | | | | | | | | | | | | | | | | _ | | n acco | 250 | 3 | | | | SHEET | | ۷ | | 130
| | | | _ | | | | | | | H
H | 18.2 | , <u>,</u> , | | | | 100 | | | ' a | Constant ASS | | | | | | | | | _ | | :: /w/ | 2 1/18/Ay 9:30 | ag . | j | Š. | 7 7 | | | į | 13 | B 61 72 | | | 1 | | | | | | | | Ed. all VOA/Mis have been preserved w/ 1:1 HCI in accordance with Mass-DEP Policy. | | ر ہی | 2 tinc | P.O. NO. | Hi | 1 95 | | ,
e::a | 7 | ANALYSES MEGUIREE | | | - | | | | | | | - | en pre | 30 | } }; | 3 | - | | 130 | | | | | | | | | | | | | _ | | ğφ.
Y | 3-1/2 | 3 3 | and | | מוס | 12/2 | | - 4 | iles | ANALY
SOSSOS
XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX | | | | 7 | 77 | | | | - | - | Tale of | 7/(0 | | Za Za | 6 | 1 | 1 | | | Lab F | A CSC SC | | | | | | | | | | .; | ອັນ
ວຸ – | 799 | > 3 | Nic | 17 | 3 4 | ames | | | 0. | 000 | , | | | | | | | | | ves, et | | 20 (j | 7 2 | 7 | 3 | | ECTIO | | | PINK COPY - Lab Files | 1. | i | | | | | | | | - | . جيا | Tee not | | \sum_{j} | copper, Nicke | 0 | | 3(3) | | | | | | | | _ | | | | | | S, | edtherw
(| F | \$ 6 g | | GZA FILE NO. | ECT | COLLECTOR(S) \times and an | | *I 1 | /anaye | 45 | | > | | 7 | ۷ ۲ | | | | | NOTES, | | |))_2 | 3 | GZA | PROJECT | COLL | | | Project Manayer | Sample
Type | | 0 (0 | | 10 | 200 | | | | | (and | gnature | | iture) | iture) | | | | | the second | | Sar
T) | 4 | NV |) N | U) | S | | | | _ | Signs | 1480 _ | (Signs | (Signa | (Signe | | | | | ;; d | YELLOW COPY | _ | | | | | | | | | | RECEIVED BY: (Signature) | RECEIVED BY: | RECEIVED BK: (Signature) | RECEIVED BY: (Signature) | RECEIVED BY: (Signature) | | | | | | /ELLO | Location | | ä. | | 5.5 | 4.5 | | | | | ECEIVI | 2 BC | ECEIVI | ECEIVI | ECEIVI | | Æ: | ပ် | | | | Lo | 3 | ングゲー | 17 | 5 | 1.3 | | | | VERS | E(| 1 - E | \\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\ | Œ | æ | | PHONE: | L, ÍN(
sTS | | | amples
RD | | 0 | 2 6 | 9 | 0 | 0 | | | | INTAI | E / | \\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\ | By | Æ | ИĒ | 1,7 | | ENTIS
ENTIS
1 06066 | | 1 | nies Sa | Col-
lector's
Initials | 3 | 3 | | | | | | | 7F CC | DATE/TIME | 17/95
DATE/TIME | LP/N / / DATE/TIME | DATE/TIME | DATE/TIME | D | | NME
D SCI
Road
CTICUT
-7655 | | | ompar
)Y R | 2 t 1 | 35 | 3 | | | | | | | BERG | 6 | 3/34 | | O | à | 17 | 4 | VIRC
S ANE
7 Naek
CONNE
(203) 875 | | | WHITE COPY - Original (Accompanies Samples) CHAIN-OF-CUSTODY RECORD | Bailer | | | | | ., | | | | TOTAL NUMBER OF CONTAINERS | (a. | 3 | (87) (91
179) | (ə. | (a) | 6 | \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ | GZA GEOENVIRONMENTAL, INC.
ENGINEERS AND SCIENTISTS
27 Nack Road
VERNON, CONNECTICUT 06066
(203) 875-7655
FAX (203) 872-2416 | | | origino | Time
(24hr.) | | | | | | | | | TOTAL | ignatur | Signature | Signature) | ignatur | ignatur | TORY | C1 2 | A GE
ENG! | | | 7007
7-0-7 | Få | | | | | | | | | _ | RELYAQUISHED BY: (Signature) | 300 | ~~ | RELINQUISHED BY: (Signature) | RELINQUISHED BY: (Signature) | ANALYTICAL LABORATORY : | GZA CONTACT: | CZ | | | HAIP
HAIP | | 1,7 | γ, γ
γ | 5,3 | 3/5 | 323 | | | | | SHED | A SEC | RELINQUISHED BY: | SHED | SHED | SAL LA | TORY (| | | 4 гр | . ₹ Ū | Bample
1.D. | 1/2 | 1 | 1/6- | 4, | 4-1 | | | | | Non/ | TY OURS | Z NOW | INONI | INONI | ALYTIK | LABORATORY (
GZA CONTACT | | | | | ` | B | | 373 | 4 | क्री | | | | | 馬 | 1 | | REL | REL | A | Z 23 | | | | | | 7 | 7 , | . – | 7 | 77 | | | | | | | | | | | | | *WHITE COPY - Olymal (Accompanies Samples) YELLOW COPY - Project Managori PINK COPY · Lab Files | | B | | | | 2 | \sum_{i} | Σ | Z | 5 | 3 | 7 | بد | ی | _ | L- | 8 | - | | | | | | | |---|---|--|--|--|--|--|--
--|--|--|--|--
---	--	---	--
--	--	---	
to fresh air. If breathing is difficult, administer oxygen. If breathing has stopped, give artificial respiration and get medical attention immediately. Ingestion: If conscious, give 1-2 glasses of water to dilute. Do not leave victim unattended. To prevent aspiration of swallowed product, lay victim on side with head lower than waist. Get medical attention. Special Notes: All treatments should be based on observed signs and symptoms of distress in the patient. # 5. FIRE FIGHTING MEASURES Flash Point (degrees F) and Test Method: Not flammable. Autoignition Temperature: Not applicable. Flammability Limits in air (% V): Not applicable. Extinguishing Media: Use media appropriate for surrounding materials. Special Fire Fighting Procedures: None. Unusual Fire & Explosion Hazards: If product is involved in a fire, carbon dioxide may evolve. # 6. ACCIDENTAL RELEASE MEASURES Small Spills: Shovel and place in appropriate containers for reuse or disposal. Remaining traces with plenty of water to sewers if local regulations permit. Large Spills: Collect as much as possible for re-use. Collect remaining material and place in closed containers for disposal, reuse or neutralize with a dilute acid. Flush remaining traces with water to sewers. Neutralizing Materials: Dilute acids. # MATERIAL SAFETY DATA SHEET Product: SODA ASH Page 3 of 5 HVC, Inc. ### 7. HANDLING AND STORAGE # Handling and Storage Precautions: Clean up all spills immediately. Store product in a cool, dry and well ventilated area. Avoid contact with acids in enclosed areas as carbon dioxide is generated which may displace the oxygen. Other precautions: Keep containers closed when not in use. # 8. EXPOSURE CONTROLS/PERSONAL PROTECTION Ventilation: General ventilation should be adequate in typical applications of this product; if mists are present, use sufficient local ventilation to remove them. Respiratory Protection: If mists are present, use a NIOSH approved respirator for mists. Respirator use should be in accordance with 29 CFR 1910.134. Eye Protection: Safety glasses or goggles. Other Protective Equipment: Neoprene or PVC gloves recommended. Rubber or PVC apron will provide additional protection. # 9. PHYSICAL AND CHEMICAL PROPERTIES Boiling Point @ 760 mm Hg (degrees F): Decomposes Freezing Point (degrees F): Melts at 1564°. pH: 11.3 at 1% Percent volatile by weight (%): Not applicable. Specific Gravity or bulk density: 2.53 at 68°F. Solubility in Water: Soluble. Appearance and odor: White, solid briquette. Vapor Pressure mm Hg @ 20 degrees C: Not applicable. Vapor Density (Air = 1): Not applicable. Evaporation Rate (BuAc = 1): Not applicable. 03/14/01 WED 15:59 FAX 203 5/5 5030 CONT SENTICES # MATERIAL SAFETY DATA SHEET Product: : SODA ASH Page 4 of 5 HVC, Inc. # 10. STABILITY AND REACTIVITY **Product Stability:** Conditions to avoid: Damp or wet storage areas. Chemical Incompatibility: Acids, water reactive materials, magnesium, aluminum, fluorine, moisture, phosphorus pentoxide Hazardous Decomposition Products: Carbon dioxide. Hazardous Polymerization: Will not occur. # 11. TOXICOLOGICAL INFORMATION LC 50 – 2300 mg/cu.m/2 hour (rat) LD50 – 4090 mg/kg (rat) # 12. ECOLOGICAL INFORMATION Daphnia Magna 96 hr $LC_{50} = 265 - 565 \text{ mg/L}$ Bluegill sunfish 96 hr $LC_{50} = 300 - 320 \text{ mg/L}$ # 13. DISPOSAL CONSIDERATIONS Waste Disposal Methods: Follow all local, state and federal regulations regarding hazardous waste. # 14. TRANSPORT INFORMATION D.O.T. Proper Shipping Name: Not regulated. D.O.T. Hazard Class: Not applicable D.O.T. Labels Required: Not applicable UN/NA Code: Not applicable. Reportable Quantity Amount: Not applicable. # **MATERIAL SAFETY DATA SHEET** Product: : SODA ASH Page 5 of 5 HVC, Inc. 15. REGULATORY INFORMATION Section 313 Supplier Notification: CAS Registry No. Chemical Ingredient Percent Wt. None 16. OTHER INFORMATION Hazardous Material Identification System Rating (HMIS): Health: 0 Flammability: Reactivity: Personal Protection: B Reason for Issue: New format. Prepared by: Allan T. Cowie Title: Technical Director Approval Date: 10/25/99 Product Code(s): 2802 # Disclaimer: The information contained herein is based on data available to use and is believed to be correct. However, HVC makes no warranty, expressed or implied, regarding the accuracy of this data or the results to be obtained from the use thereof. HVC assumes no responsibility for injury from the use of the product described herein. N.A. = Not Applicable N.D. = Not Determined N.E. = Not Established Format: 05/16/97 Sodash.doc # MATERIAL SAFETY DATA SHEET # 1. CHEMICAL PRODUCT AND COMPANY IDENTIFICATION MSDS NUMBER: M5420 ISSUE DATE: 10-05-98 **PRODUCT NAME:** S - 25, SODIUM METASILICATE ANHYDROUS Manufacturer's Occidental Chemical Corporation, Occidental Tower Name and 5005 LBJ Freeway, P.O. Box 809050 Address: Dallas, TX 75380 (972) 404-3800 24 HOUR EMERGENCY TELEPHONE: 1-800-733-3665 OR 972-404-3228 TO REQUEST AN MSDS: 1-800-699-4970 CUSTOMER SERVICE: 1-800-752-5151 PRODUCT USE: Detergents, Industrial Cleaners CHEMICAL NAME: Sodium Metasilicate Anhydrous CHEMICAL FORMULA: Na2SiO3 SYNONYMS/COMMON NAMES: ANHYDROUS METASILICATE SODIUM METASILICATE ANHYDROUS ### 2. COMPOSITION/INFORMATION ON INGREDIENTS CAS NUMBER / NAME 6834-92-09 Silicic acid (H2SiO3), disodium salt EXPOSURE LIMITS PERCENTAGE PEL: Not Established VOL TLV: Not Established WT 95-99.5 COMMON NAMES: SODIUM METASILICATE Listed On (List Legend Below): 00 19 22 23 50 51 LIST LEGEND 00 TSCA INVENTORY 19 PA REQUIREMENT- 3% OR GREATER 22 CANADIAN DOMESTIC SUB LIST 23 NJ REQUIREMENT- 1% OR GREATER 50 PHILIPPINES INVENTORY (PICCS) 51 EINECS 03/14/01 WED 15:59 FAX 203 575 5630 CURP SERVICES OCCIDENTAL CHEMICAL CORPORATION MSDS NUMBER : M5420 PRODUCT NAME: S - 25, SODIUM METASILICATE ANHYDROUS PAGE 2 OF 12 10-05-98 あってころ ### 3. HAZARDS IDENTIFICATION ***************** EMERGENCY OVERVIEW ******** MAY CAUSE PERMANENT EYE DAMAGE. CORROSIVE TO EYES, SKIN, RESPIRATORY AND DIGESTIVE TRACT. White granular solid, no odor. POTENTIAL HEALTH EFFECTS ROUTES OF ENTRY: Ingestion, Inhalation. TARGET ORGANS: Eyes, Skin, Respiratory Tract, Gastrointestinal Tract. IRRITANCY: Severe, Potentially by all routes of exposure. SENSITIZING CAPABILITY: None known. REPRODUCTIVE EFFECTS: None known. CANCER INFORMATION: None known. SHORT-TERM EXPOSURE (ACUTE) ### INHALATION: May cause coughing, sneezing or other symptoms of upper respiratory tract irritation. Exposure may result in lung tissue damage due to corrosive effects. EVES. Overexposure will cause severe burns and potential permanent damage. SKIN: Contact may cause burns and tissue destruction. Exposure can cause burns which are not immediately painful or visible. INGESTION: Can cause severe burns to the mucous membranes of the digestive tract. REPEATED EXPOSURE (CHRONIC) No known chronic effects. CURP SERVICES PAGE 3 OF 12 10-05-98 MSDS NUMBER : MS420 PRODUCT NAME : S - 25, SODIUM METASILICATE ANHYDROUS ### 3. HAZARDS IDENTIFICATION (Continued) ### SYNERGISTIC MATERIALS: None known. MEDICAL CONDITIONS AGGRAVATED BY EXPOSURE: None known. # 4. FIRST AID MEASURES ### EYES: IMMEDIATELY FLUSH EYES WITH A DIRECTED STREAM OF WATER for at least 15 minutes, forcibly holding eyelids apart to ensure complete irrigation of all eye and lid tissue. Washing eyes within several seconds is essential to achieve maximum effectiveness. GET MEDICAL ATTENTION IMMEDIATELY. ### SKIN: Flush thoroughly with cool water under shower while removing contaminated clothing and shoes. Discard non-rubber shoes. Wash clothing before reuse. GET MEDICAL ATTENTION AS SOON AS POSSIBLE. ### INHALATION: Remove to fresh air. If breathing is difficult, have trained person administer oxygen. If respiration stops, have a trained person administer artificial respiration. GET MEDICAL ATTENTION IMMEDIATELY. ### INGESTION: NEVER GIVE ANYTHING BY MOUTH TO AN UNCONSCIOUS PERSON. If swallowed, DO NOT INDUCE VOMITING. Give large quantities of water. (If available, give several glasses of milk.) If vomiting occurs spontaneously, keep airway clear and give more water. GET MEDICAL ATTENTION IMMEDIATELY. ### NOTES TO PHYSICIAN: No specialized procedures. Treat for clinical symptoms. # 5. FIRE FIGHTING MEASURES Flash Point: Nonflammable Method: Not Applicable Autoignition Temperature: Nonflammable # FLAMMABLE LIMITS IN AIR BY % VOLUME Upper: Not applicable Lower: Not applicable 14701 WED 16:00 FAX 203 575 5630 CURP SERVICES OCCIDENTAL CHEMICAL CORPORATION MSDS NUMBER : MS420 PRODUCT NAME: S - 25, SODIUM METASILICATE ANHYDROUS PAGE 4 OF 12 10-05-98 # 5. FIRE FIGHTING MEASURES (Continued) ### EXTINGUISHING MEDIA: Non-flammable / Non-combustible. Use agents appropriate for surrounding fire. ### FIRE FIGHTING PROCEDURES: Wear NIOSH/MSHA approved positive pressure self-contained breathing apparatus and full protective clothing. ### FIRE AND EXPLOSION HAZARD: Direct contact with water creates heat and may cause spattering. ### SENSITIVITY TO MECHANICAL IMPACT: Not sensitive. # SENSITIVITY TO STATIC DISCHARGE: Not sensitive. ### 6. ACCIDENTAL RELEASE MEASURES ### ERSONAL PRECAUTIONS: Evacuate unnecessary personnel. Follow protective measures provided under Personal Protection in Section 8. ### **ENVIRONMENTAL PRECAUTIONS:** Do not flush to sewer. Spills or releases should be reported, if required, to the appropriate local, state and federal agencies. ### METHODS FOR CLEANING UP: Dry material can be shoveled up, liquid material can be removed with a vacuum truck. Neutralize remaining traces with any dilute inorganic acid (hydrochloric, sulfuric or acetic acid). Flush spill area with water followed by a liberal covering of sodium carbonate. All clean-up material should be removed for proper treatment or disposal. Spills on other than pavement (eg. dirt or sand) may be handled by removing the affected soil and placing in approved containers. # 7. HANDLING AND STORAGE # HANDLING: Wear personal protective equipment as described in Exposure			
Controls/Personal Protection (Section 8) of the MSDS. -MSDS NUMBER : MS420 PRODUCT NAME: S . 25, SODIUM METASILICATE ANHYDROUS PAGE 5 OF 12 10-05-98 # 7. HANDLING AND STORAGE (Continued) Do not get in eyes, on skin or clothing. Avoid breathing airborne particulates; wear respiratory protection when exposure is possible. Wash contaminated clothing before reuse. Wash thoroughly with soap and water after handling. Avoid contact with acids. # SPECIAL MIXING AND HANDLING INSTRUCTIONS: Do not allow contact with materials as noted in Section 10. Direct contact with water creates heat and may cause spattering. Always add product slowly to liquid surface, with constant stirring to assure that product is completely dissolved as it is added to dissipate heat. ### STORAGE: Keep container tightly closed and properly labeled. Do not store in aluminum container or use aluminum fittings or transfer lines, as flammable hydrogen gas can be generated. # 8. EXPOSURE CONTROLS/PERSONAL PROTECTION # **ENGINEERING CONTROLS:** Use adequate local exhaust ventilation where dust, mist or spray may be generated. # PERSONAL PROTECTION ### RESPIRATORY: Wear a NIOSH/MSHA approved respirator following manufacturer's recommendations, where airborne contaminants may occur. # EYE/FACE: Wear chemical safety goggles plus full face shield to protect against contact when appropriate (ANSI 287.1). ### SKIN: Wear protective clothing to minimize skin contact. Wear chemical resistant gloves such as rubber, neoprene or vinyl. Wash contaminated clothing and dry before reuse. OCCIDENTAL CHEMICAL CORPORATION PAGE 6 OF 12 MSDS NUMBER : M5420 10-05-98	PRODUCT	NAME:	\$ - 25,
while removing contaminated clothing and shoes. Discard non-rubber shoes. Wash clothing before reuse. GET MEDICAL ATTENTION AS SOON AS POSSIBLE. ### INHALATION: Remove to fresh air. If breathing is difficult, have trained person administer oxygen. If respiration stops, have a trained person administer artificial respiration. GET MEDICAL ATTENTION IMMEDIATELY. ### INGESTION: NEVER GIVE ANYTHING BY MOUTH TO AN UNCONSCIOUS PERSON. If swallowed, DO NOT INDUCE VOMITING. Give large quantities of water. (If available, give several glasses of milk.) If vomiting occurs spontaneously, keep airway clear and give more water. GET MEDICAL ATTENTION IMMEDIATELY. # IN CASE OF SPILL OR LEAK: Do not flush to sewer. 03/14/01 WED 16:02 FAX 203 575 5630 CUKY SERVICES OCCIDENTAL CHEMICAL CORPORATION MSDS NUMBER : M5420 PRODUCT NAME: S - 25, SODIUM METASILICATE ANHYDROUS PAGE 12 OF 12 10-05-93 # 17 WARNING LABEL INFORMATION (Continued) Dry material can be shoveled up, liquid material can be removed with a vacuum truck. Neutralize remaining traces with any dilute inorganic acid (hydrochloric, sulfuric or acetic acid). Flush spill area with water followed by a liberal covering of sodium carbonate. All clean-up material should be removed for proper treatment or disposal. Spills on other than pavement (eg. dirt or sand) may be handled by removing the affected soil and placing in approved containers. Spills or releases should be reported, if required, to the appropriate local, state and federal agencies. ### FIRE: Non-flammable / Non-combustible. Use extinguishing medium as appropriate for surrounding fire. ### HANDLING AND STORAGE: Direct contact with water creates heat and may cause spattering. Always add product slowly to liquid surface, with constant stirring to assure that product is completely dissolved as it is added to dissipate heat. Do not store in aluminum container or use aluminum fittings or ransfer lines, as flammable hydrogen gas can be generated. # DISPOSAL: Dispose of all waste and contaminated equipment in accordance with all applicable federal, state and local health and environmental regulations. INFORMATION REQUIRED BY FEDERAL, STATE OR LOCAL REGULATIONS: This Product Contains: CAS# NAME 6834-92-0 Silicic acid (H2SiO3), disodium salt HMIS RATING: HEALTH 3 FLAMMABILITY 0 REACTIVITY 1_ LABEL NUMBER: 0198M5420 For Industrial Use Only # MATERIAL SAFETY DATA SHEET M1620 41625 1. CHEMICAL PRODUCT AND COMPANY IDENTIFICATION 411638 MSDS NUMBER: M32413 ISSUE DATE: 01-01-98 PRODUCT NAME: CAUSTIC SODA ANHYDROUS (ALL GRADES) Manufacturer's Occidental Chemical Corporation, Occidental Tower Name and 5005 LBJ Freeway, P.O. Box 809050 Address : Dallas, TX 75380 (972) 404-3800 24 HOUR EMERGENCY TELEPHONE: 1-800-733-3665 OR 972-404-3228 TO REQUEST AN MSDS: 1-800-699-4970 CUSTOMER SERVICE : 1-800-752-5151 PRODUCT USE: Metal Finishing, Industrial Cleaners, Drum Cleaners, Petroelum Industry, Chemical Processing CHEMICAL NAME: Sodium hydroxide CHEMICAL FORMULA: NaOH SYNONYMS/COMMON NAMES: Sodium hydroxide-dry ### 2. COMPOSITION/INFORMATION ON INGREDIENTS CAS NUMBER / NAME 1310-73-2 /Sodium hydroxide (Na(OH)) EXPOSURE LIMITS PEL: 2 mg/m3, Ceiling TLV: 2 mg/m3, Ceiling PERCENTAGE TOV $\mathbf{W}\mathbf{T}$ 97-98.20 COMMON NAMES: CAUSTIC SODA Listed On (List Legend Below): 00 13 18 21 22 50 51 MSDS NUMBER : M32413 PRODUCT NAME: CAUSTIC SODA ANHYDROUS (ALL GRADES) PAGE 2 OF 18 01-01-98 # 2. COMPOSITION/INFORMATION ON INGREDIENTS (Continued) 7647-14-5 Sodium chloride (NaCl) EXPOSURE LIMITS PEL: None established TLV: None established PERCENTAGE VOL WT COMMON NAMES: SALT Listed On (List Legend Below): 00 22 23 50 51 497-19-8 Carbonic acid disodium salt EXPOSURE LIMITS PEL:Not Established TLV:Not Established PERCENTAGE VOL \mathtt{WT} 0.40-1 COMMON NAMES: SODA ASH SODIUM CARBONATE Listed On (List Legend Below): 00 22 23 50 51 LIST LEGEND 00 TSCA INVENTORY 13 PA ENVIROMENTAL HAZ SUBSTANCE 18 NY HAZARDOUS SUBSTANCES 21 NJ SPECIAL HEALTH HAZ SUB 22 CANADIAN DOMESTIC SUB LIST 23 NJ REQUIREMENT- 1% OR GREATER 50 PHILIPPINES INVENTORY (PICCS) 51 EINECS ### 3. HAZARDS IDENTIFICATION # * MAY CAUSE BURNS TO THE EYES, SKIN, AND MUCOUS MEMBRANES. MAY CAUSE PERMANENT EYE DAMAGE. INHALATION OF DUST, MIST, OR SPRAY * CAN CAUSE SEVERE LUNG DAMAGE. CAN REACT VIOLENTLY WITH WATER, * ACIDS AND OTHER SUBSTANCES. Clear white solid with no distinct odor # POTENTIAL HEALTH EFFECTS ### ROUTES OF ENTRY: Inhalation, Ingestion. # TARGET ORGANS: Eyes, Skin, Respiratory Tract, Gastrointestinal Tract. MSDS NUMBER : M32413 PRODUCT NAME: CAUSTIC SODA ANHYDROUS (ALL GRADES) PAGE 3 OF 18 01-01-98 # 3. HAZARDS IDENTIFICATION (Continued) ### IRRITANCY: : Liquid, vapors or mist may be irritating to eyes, skin and respiratory tract. ### SENSITIZING CAPABILITY: None known. ### REPRODUCTIVE EFFECTS: None known. ### CANCER INFORMATION: None known. ### SHORT-TERM EXPOSURE (ACUTE) ### INHALATION: Exposure to vapor, mist or liquid can produce burns of the respiratory tract. Severe exposures could result in chemical pneumonia. ### EYES: Contact can cause severe damage including burns and blindness. The severity of the effects depend on concentration and how soon after exposure the eyes are washed. ### SKIN: Corrosive. Contact may cause burns and tissue destruction. Note that irritation may follow an initial latency (delay between the time that the exposure occurs and when the sense of irritation starts). The latent period can vary as much as hours for a dilute solution (0.04%) to minutes with more concentrated solutions (25-50%). Prolonged or repeated contact, even to dilute concentrations, can cause a high degree of tissue destruction. ### INGESTION: Corrosive. Severe burns and complete tissue perforation of mucous membranes of mouth, throat and stomach. ### REPEATED EXPOSURE (CHRONIC) No known chronic effects. # SYNERGISTIC MATERIALS: None known. MSDS NUMBER : M32413 PRODUCT NAME: CAUSTIC SOD= ANHYDROUS (ALL GRADES) PAGE 4 OF 18 01-01-98 # 3. HAZARDS IDENTIFICATION (Continued) MEDICAL CONDITIONS AGGRAVATED BY EXPOSURE: None known. Revised ### 4. FIRST AID MEASURES ### EYES: IMMEDIATELY FLUSH EYES WITH A DIRECTED STREAM OF WATER for at least 15 minutes, forcibly holding eyelids apart to ensure complete irrigation of all eye and lid tissue. Washing eyes within several seconds is essential to achieve maximum effectiveness. GET MEDICAL ATTENTION IMMEDIATELY. ### SKIN: Flush thoroughly with wool water under shower while removing contaminated clothing and shoes. Discard non-rubber shoes. Wash clothing before reuse. GET MEDICAL ATTENTION AS SOON AS POSSIBLE. ### INHALATION: Remove to fresh air. If breathing is difficult, have trained person administer oxygen. If respiration stops, have a trained person administer artificial respiration. GET MEDICAL ATTENTION IMMEDIATELY. ### INGESTION: NEVER GIVE ANYTHING FY MOUTH TO AN UNCONSCIOUS PERSON. If swallowed, DO NOT INDUCE VOMITING. Give large quantities of water. (If available, give several glasses of milk.) If vomiting occurs spontaneously, keep zirway clear and give more water. GET MEDICAL ATTENTION IMMEDIATELY. ### NOTES TO PHYSICIAN: No specialized procedures. Treat for clinical symptoms. ### 5. FIRE FIGHTING MEASURES Flash Point: Non-flammable Method: Not applicabl≥ Autoignition Temperature: Nonflammable ### FLAMMABLE LIMITS IN AIR BY % VOLUME Upper: Not applicable Lower: Not applicable ### EXTINGUISHING MEDIA: Non-flammable / Non-mombustible. MSDS NUMBER : M32413 PRODUCT NAME: CAUSTIC SODA ANHYDROUS (ALL GRADES) PAGE 5 OF 18 01-01-98 ### 5. FIRE FIGHTING MEASURES (Continued) Use water spray to keep fire-exposed containers cool. ### FIRE FIGHTING PROCEDURES: Use water to cool containers but avoid getting water into containers. Wear NIOSH/MSHA approved positive-pressure self-contained breathing apparatus and full protective clothing. ### FIRE AND EXPLOSION HAZARD: Direct contact with water can cause a violent exothermic reaction. ### SENSITIVITY TO MECHANICAL IMPACT: Not sensitive. ### SENSITIVITY TO STATIC DISCHARGE: Not sensitive. **₹** ₹ ### 6. ACCIDENTAL RELEASE MEASURES # PERSONAL PRECAUTIONS: Evacuate unnecessary personnel. Follow protective measures provided under Personal Protection in Section 8. ### **ENVIRONMENTAL PRECAUTIONS:** Contain material and prevent accumulation of dust. CAUTION: This product may react strongly with acids and water. ### NEVER FLUSH TO SEWER. According to 40 CFR 302 Table 302.4 (CERCLA), environmental releases that exceed the RQ must be reported to the National Response Center by calling 800-424-8802 (202-426-2675) and the State Emergency Response Commission and the Local Emergency Planning Committee (40 CFR 355.40) as appropriate. ### METHODS FOR CLEANING UP: Dry material can be shoveled up, liquid material can be removed with a vacuum truck. Neutralize remaining traces with any dilute inorganic acid (hydrochloric, sulfuric or acetic acid). Flush spill area with water followed by a liberal covering of sodium carbonate. All clean-up material should be removed for proper treatment or disposal. Spills on other than pavement (eg. dirt or sand) may be handled by removing the affected soil and placing in approved containers. MSDS NUMBER : M32413 PRODUCT NAME: CAUSTIC SODA ANHYDROUS (ALL GRADES) PAGE 6 OF 18 01-01-98 # 7. HANDLING AND STORAGE ### HANDLING: Avoid breathing dust. Hazardous carbon monoxide gas can form upon contact with food and beverage products in enclosed spaces and can cause death. Follow appropriate tank entry procedures (ANSI Z117.1). Containers, even those that have been emptied, will retain product residue and vapor and should be handled as if they were full. Do not get in eyes, on skin or clothing. Do not take internally Keep away from acids, to avoid possible violent reaction. Wash contaminated clothing before reuse. Wash thoroughly after handling; exposure can cause burns which are not immediately painful or visible. Wear personal protective equipment as described in Exposure			
Controls/Personal Protection (Section 8) of the MSDS. If product is added too rapidly, or without stirring, and becomes concentrated at bottom of mixing vessel, excessive heat may be generated, resulting in DANGEROUS boiling and spattering, and a possible IMMEDIATE AND VIOLENT ERUPTION of highly caustic solution. ### SPECIAL MIXING AND HANDLING INSTRUCTIONS: Considerable heat is generated when product is mixed with water. Therefore, when making solutions always carefully follow these steps: ALWAYS wear ALL protective clothing described above. NEVER add water to product. ALWAYS add product, with constant stirring, slowly to surface of lukewarm (80-100°F) water, to assure product is being completely dissolved as it is added. Product can react EXPLOSIVELY with acids, aldehydes, and many other organic chemicals, add product VERY gradually, while stirring constantly. If product is added too rapidly, or without stirring, and becomes concentrated at bottom of mixing vessel, excessive heat may be generated, resulting in DANGEROUS boiling and spattering, and a possible IMMEDIATE AND VIOLENT ERUPTION of highly caustic solution. ALWAYS empty and clean containers of all residues before adding product, to avoid possible EXPLOSIVE reaction between product and unknown residue. Returnable containers should be shipped in accordance with supplier's recommendations. Return shipments should comply with all federal, state, and DOT regulations. All residue should be removed from containers prior to disposal. Avoid contact with aluminum, tin, zinc, and alloys containing these metals. Avoid contact with leather, wool, acids, organic halogen compounds and organic nitro compounds. MSDS NUMBER : M32413 PRODUCT NAME: CAUSTIC SODA ANHYDROUS (ALL GRADES) PAGE 7 OF 18 01-01-98 # 7. HANDLING AND STORAGE (Continued) ### STORAGE: Keep container tightly closed and properly labeled. Keep container closed except when transferring material. Store in a cool, ventilated area away from incompatible materials (see Section 10). Hazardous carbon monoxide gas can form upon contact with reducing sugars and food and beverage products in enclosed spaces and can cause death. Follow appropriate tank entry procedures (ANSI Z117.1). ### 8. EXPOSURE CONTROLS/PERSONAL PROTECTION # **ENGINEERING CONTROLS:** No special ventilation required under normal use. NOTE: Where carbon monoxide may be generated, special ventilation may be required. Where engineering controls are not feasible use adequate local exhaust ventilation wherever mist, spray or vapor may be generated. ### PERSONAL PROTECTION ### RESPIRATORY: Respiratory protection is not required under normal use. Wear a NIOSH/MSHA approved respirator following manufacturer's recommendations, where airborne contaminants may occur. ### EYE/FACE: Wear chemical safety goggles. (ANSI Z87.1) ### SKIN: 4 10 Wear chemical resistant gloves such as rubber, neoprene or vinyl. Wash contaminated clothing and dry before reuse. Wear protective clothing to minimize skin contact. ### OTHER: Standard work clothing closed at the neck and wrists. Discard shoes that cannot be decontaminated. Emergency shower and eyewash facility should be in close proximity (ANSI Z358.1). MSDS NUMBER : M32413 PRODUCT NAME: CAUSTIC SODA ANHYDROUS (ALL GRADES) PAGE 8 OF 18 01-01-98 # 9. PHYSICAL AND CHEMICAL PROPERTIES Appearance and Odor: Clear white solid with no distinct odor Odor Threshold: Not applicable Specific Gravity (Water=1): 2.13 @ 20°C Vapor Pressure: 42mm Hg @ 1000°C Vapor Density (Air=1): Not Applicable Density: Not available Evaporation Rate: Not applicable % Volatiles by Wt: 0 Boiling Point: 1388°C @ 760 mm Hg Freezing Point: 318°C Melting Point: Not available Solubility in Water (% by wt.): Completely soluble pH: 0.01 moles/liter has pH 12.0 Octanol/Water Partition Coefficient: Not available Thermal Decomposition Temperature: Not available Other: COEFFICIENT WATER/OIL DISTRIBUTION: Not determined VOC (g/l. by wt.): # 10. STABILITY AND REACTIVITY CHEMICAL STABILITY: X STABLE UNSTABLE REACTS WITH: XAIROXIDIZERSXMETALSXWATERXACIDSXOTHERHEATALKALISNONE HAZARDOUS POLYMERIZATION: OCCURS X WILL NOT OCCUR COMMENTS: Avoid direct contact with water. MSDS NUMBER : M32413 PRODUCT NAME: CAUSTIC SODA ANHYDROUS (ALL GRADES) PAGE 9 OF 18 01-01-98 # 10. STABILITY AND REACTIVITY (Continued) Product is corrosive to tin, aluminum, zinc and alloys containing these metals and will react with these metals in powder form. Avoid contact with leather, wool, acids, organic halogen compounds, or organic nitro compounds. Hazardous carbon monoxide gas can form upon contact with reducing sugars, food and beverage products in enclosed spaces and can cause death. Follow appropriate tank entry procedures. See Handling and Storage (Section 7). # HAZARDOUS DECOMPOSITION PRODUCTS: None. ### 11. TOXICOLOGICAL INFORMATION 1310-73-2 Sodium hydroxide (Na(OH)) ACUTE DERMAL LD50 : (rabbit) 1350 mg/kg PRIMARY SKIN IRRITATION : (rabbit) severe PRIMARY EYE IRRITATION : (rabbit) severe 497-19-8 Carbonic acid disodium salt ACUTE ORAL LD50 : (rat) 4090 mg/kg ACUTE INHALATION LC50: (rat, 2hr) 2300 mg/m3 PRIMARY SKIN IRRITATION: (rabbit, 24hr) mild PRIMARY EYE IRRITATION: (xabbit 24hr) moderate PRIMARI ELE IRRITATION : (SADDIC) 2411) MODELACE 7647-14-5 Sodium chloride (NaCl) ACUTE ORAL LD50 : (xat) 3000 mg/kg PRIMARY SKIN IRRITATION / (rabbit) mild PRIMARY EYE IRRITATION: (rabbit) moderate 160 99 125 180 mg/L mq/L mg/L mg/L OCCIDENTAL CHEMICAL CORPORATION MSDS NUMBER : M32413 PRODUCT NAME : CAUSTIC SODA ANHYDROUS (ALL GRADES) Coding bulgaride (No(OU)) PAGE 10 OF 18. 01-01-98 ### 12. ECOLOGICAL INFORMATION	1310-73-2	Soaiui	m nyaroxiae (r
disodium salt). Limited laboratory toxicity test data indicate that it is moderately toxic to aquatic and terrestrial organisms. Sodium carbonate (Na2CO3) is a contributor to water hardness, and is a component of the buffering capacity of aquatic systems. This material will readily dissociate in water, where the equilibrium distribution of inorganic carbon (CO2, HCO3, and CO3) is based on pH. Due caution should be exercised to avoid the accidental release of this material to aquatic or terrestrial environments. ### 13. DISPOSAL CONSIDERATIONS Recovery and reuse, rather than disposal, should be the ultimate goal of handling efforts. Dispose of all waste and contaminated equipment in accordance with all applicable federal, state and local health and environmental regulations. Ensure that all responsible federal, state, and local agencies receive proper notification of spill and disposal methods. Shipments of waste materials may be subject to manifesting requirements per applicable regulations. Appropriate disposal will depend on the nature of each waste material and should be done by a competent and properly permitted contractor. The materials resulting from clean-up operations may be hazardous wastes and, therefore, subject to specific regulations. Package, store, transport, and dispose of all (clean-up) materials and any contaminated equipment in accordance with all applicable federal, state, and local regulations. # 14. TRANSPORT INFORMATION DOT PROPER SHIPPING NAME: Sodium Hydroxide, Solid DOT HAZARD CLASS: 8 MSDS NUMBER : M32413 PEODUCT NAME: CAUSTIC SODA ANHYDROUS (ALL GRADES) PAGE 13 OF 18 01-01-98 # 14. TRANSPORT INFORMATION (Continued) DOT IDENTIFICATION NO: UN1823 DOT PACKING GROUP: II DOT HAZARDOUS SUBSTANCE: RQ 1,000 Lbs. (Sodium Hydroxide) DOT MARINE POLLUTANT(S): Not Applicable ADDITIONAL DESCRIPTION REQUIREMENT: Not Applicable ### 15. REGULATORY INFORMATION ### U.S. FEDERAL REGULATIONS: OSHA Standard 29 CFR 1910.1200 requires that information be provided to employees regarding the hazards of chemicals by means of a hazard communication program including labeling, material safety data sheets, training and access to written records. We request that you, and it is your legal duty to, make all information in this Material Safety Data Sheet available to your employees. To aid our customers in complying with regulatory requirements, SARA Title III Hazard Categories for this product are indicated below. If the word "YES" appears next to any category, this product may be reportable by you under the requirements of 40.CFR.370. Please consult those regulations for details. ### TSCA: `*•<u>•</u>•]1 All components of this product that are required to be on the TSCA inventory are listed on the inventory. ### SARA/TITLE III HAZARD CATEGORIES: Immediate (Acute) Health: YES Reactive Hazard YES Delayed (Chronic) Health: NO Sudden Release of Pressure NO NO ### HMIS HAZARD RATINGS: HEALTH HAZARD: 3 FIRE HAZARD: 0 REACTIVITY: 2 # STATE REGULATIONS: See Section 2. COMPOSITION/INFORMATION ON INGREDIENTS list legend for applicable state regulation. ### INTERNATIONAL REGULATIONS: Consult the regulations of the importing country. ### CANADA: WHMIS Hazard Class: D1B, E OCCIDENTAL CHEMICAL CORPORATION MSDS NUMBER : M32413 PRODUCT NAME : CAUSTIC SODA ANHYDROUS (ALL GRADES) PAGE 14 OF 18. 01-01-98 ∠ ب ب زيد # 16. OTHER INFORMATION For additional non-emergency health, safety or environmental information telephone (972) 404-2405 or write to: Occidental Chemical Corporation Product Stewardship Department 5005 LBJ Freeway P.O. Box 809051 Dallas, Texas 75380 #### MSDS LEGEND: ACGIH = American Cofference of Governmental Industrial Hygienists CAS = Chemical Abstracts Service Registry Number CEILING = Ceiling Limit (15 Minutes) CEL - Corporate Exposure Limit OSHA - Occupational Safety and Health Administration PEL = Permissible Exposure Limit (OSHA) STEL = Short Term Exposure Limit (15 Minutes) TDG = Transportation of Dangerous Goods (Canada) TLV - Threshold Limit Value (ACGIH) TWA - Time Weightec Average (8 Hours) WHMIS - Worker Hazarāous Materials Information System (Canada) * = See Section 3 Hazards Identification - Repeated Exposure(Chronic) Information The information presented herein, while not guaranteed, IMPORTANT: was prepared by competent technical personnel and is true and accurate to the best of our knowledge. NO WARRANTY OF MERCHANTABILITY OR FITNESS FOR PURPOSE, OR OF ANY OTHER KIND, EXPRESS OR IMPLIED, IS MADE REGARDING PERFORMANCE, STABILITY OR OTHERWISE. This information is not intended to be all-inclusive as to the manner and conditions of use, handling and storage. Other factors may involve other or additional safety or performance considerations. While our technical personnel will be happy to respond to questions regarding safe handling and use procedures, safe handling and use remains the responsibility of the customer. No suggestions for use are intended as, and nothing herein shall be construed as a recommendation to infringe any existing patents or violate any federal, state or local laws, rules, regulations or ordinances. This Material Safety Data Sheet (MSDS) covers the following materials: - DIAPHRAGM NO. 2 FLIKE - BEADS - SOLID - CAUSTIC SODA-DIAPERAGM COMPOUNDER - CAUSTIC SODA RAYON NO. 2 FLAKE - CAUSTIC SODA RAYON NO. 4 FLAKE - CAUSTIC SODA-SOLID - CAUSTIC SODA-DIAPERAGM NO. 2 FLAKE -OCCIDENTAL CHEMICAL CORPORATION MSDS NUMBER : M32413 PLODUCT NAME: CAUSTIC SODA ANHYDROUS (ALL GRADES) PAGE 15 OF 18 01-01-98 # 16. OTHER INFORMATION (Continued) - CAUSTIC SODA-BEADS - CAUSTIC SODA- DIAPHRAGM NO. 4 FLAKE #### Revised ## 17. WARNING LABEL INFORMATION ## SIGNAL WORD: DANGER #### HAZARD WARNINGS: MAY CAUSE BURNS TO THE EYES, SKIN, AND MUCOUS MEMBRANES. MAY CAUSE PERMANENT EYE DAMAGE. INHALATION OF DUST, MIST, OR SPRAY CAN CAUSE SEVERE LUNG DAMAGE. CAN REACT VIOLENTLY WITH WATER, ACIDS AND OTHER SUBSTANCES. #### PRECAUTIONS: Avoid contact with eyes, skin and clothing. Avoid breathing dust, vapors or mist. Do not swallow. Use with adequate ventilation and wear respiratory protection when exposure to dust, mist, or spray is possible. Wear safety glasses with side shields or chemical splash goggles, protective clothing and chemical resistant gloves. Wash thoroughly after handling; exposure can cause burns which are not immediately painful or visible. Keep container tightly closed and properly labeled. Product can react violently with water, acids and other substances. See Handling and Storage (Section 7) of the MSDS for instructions before using. Avoid contact with aluminum, tin, zinc, and alloys containing these metals. Avoid contact with leather, wool, acids, organic halogen compounds and organic nitro compounds. Hazardous carbon monoxide gas can form upon contact with food and beverage products in enclosed spaces and can cause death. Follow appropriate tank entry procedures (ANSI Z117.1). OCCIDENTAL CHEMICAL CORPOLATION MSDS NUMBER : M32413 PRODUCT NAME : CAUSTIC SOLA ANHYDROUS (ALL GRADES) PAGE 16 OF 18. 01-01-98 ## 17. WARNING LABEL INFORMATION (Continued) #### FIRST AID #### EYES: IMMEDIATELY FLUSH EYES WITH A DIRECTED STREAM OF WATER for at least 15 minutes, forcibly holding eyelids apart to ensure complete irrigation of all eye and lid tissue. Washing eyes within several seconds is essential to achieve maximum effectiveness. GET MEDICAL ATTENTION IMMEDIATELY. #### SKIN: Flush thoroughly with cool water under shower while removing contaminated clothing and shoes. Discard non-rubber shoes. Wash clothing before reuse. GET MEDICAL ATTENTION AS SOON AS POSSIBLE. # INHALATION: Remove to fresh air. If breathing is difficult, have trained person administer oxygen. If respiration stops, have a trained person administer artificial respiration. GET MEDICAL ATTENTION IMMEDIATELY. #### INGESTION: NEVER GIVE ANYTHING BY MOUTH TO AN UNCONSCIOUS PERSON. If swallowed, DO NOT INDUCE VOMITING. Give large quantities of water. (If available, give several glasses of milk.) If vomiting occurs spontaneously, keep airway clear and give more water. GET MEDICAL ATTENTION IMMEDIATELY. #### IN CASE OF SPILL OR LEAK: Leaks should be stopped. CAUTION: This product may react strongly with acids and water. Scoop or sweep up all spilled product and other contaminated material and place in marked disposal containers Neutralize residue with dilute acid and flush spill area with water followed by a liberal covering of sodium carbonate. Dispose of wash water and spill by-products according to federal, state and local regulations. Spills of 1000 pounds or more must be reported to the National Response Center, 1-800-424-8802. State and local regulations may have additional reporting requirements, check with the proper state and local authorities. Wear neoprene or rubber gloves. #### FIRE: Material does not burn. Use extinguishing medium as appropriate for surrounding fire. *OCCIDENTAL CHEMICAL CORPORATION MSDS NUMBER : M32413 PRODUCT NAME: CAUSTIC SODA ANHYDROUS (ALL GRADES) PAGE 17 OF 18 01-01-98 # 17. WARNING LABEL INFORMATION (Continued) #### HANDLING AND STORAGE: Considerable heat is generated when product is mixed with water. Therefore, when making solutions always carefully follow these steps: ALWAYS wear ALL protective clothing described above. NEVER add water to product. ALWAYS add product, with constant stirring, slowly to surface of lukewarm (80-100°F) water, to assure product is being completely dissolved as it is added. Product can react EXPLOSIVELY with acids, aldehydes, and many other organic chemicals, add product VERY gradually, while stirring constantly. If product is added too rapidly, or without stirring, and becomes concentrated at bottom of mixing vessel, excessive heat may be generated, resulting in DANGEROUS boiling and spattering, and a possible IMMEDIATE AND VIOLENT ERUPTION of highly caustic solution. ALWAYS empty and clean containers of all residues before adding product, to avoid possible EXPLOSIVE reaction between			
product and unknown residue. Returnable containers should be shipped in accordance with supplier's recommendations. Return shipments should comply with all federal, state, and DOT regulations. All residue should be removed from containers prior to disposal. Containers that have been emptied, will retain product residue and vapor and should be handled as if they were full. # DISPOSAL: A spill or release of this material may trigger the emergency release reporting requirements under SARA, Title III (40 CFR, Part 355) and/or CERCLA (40 CFR, Part 300). State or local reporting requirements may differ from federal requirements. Consult counsel for further guidance on your responsibilities under these laws. Material that cannot be reused or chemically reprocessed should be disposed of in a manner meeting government regulations. Always package, store, transport and dispose of all waste and contaminated equipment in accordance with all applicable federal, state and local health and environmental regulations. Appropriate disposal will depend on the nature of each waste material and should be done by a competent and properly permitted contractor. # INFORMATION REQUIRED BY FEDERAL, STATE OR LOCAL REGULATIONS: #### This Product Contains: NAME C45#	CAS#	14.4	
CONNECTION HERE! MACOOLS RC location #3. From the hook shaped sand bar located where Steele Brook and the Naugatuck River meet a total of four sediment samples (#11-#14) were collected. Sample #11 was collected from the top of the sandbar, sample #12 was collected on the eastern side of the sandbar, sample #13 was collected from the bottom of the pool before the sandbar, and sample #14 was collected on the southern side (i.e. downriver side of the sandbar). Sample #15, a background sample, was collected in the Naugatuck River to the north of Steele Brook's intersection with the Naugatuck River. The following three pages show photographs of Steele Brook and its intersection with the Naugatuck River taken on November 18, 1994 during the first day of sampling activities. On November 23, 1994 David Faist and John Goodno of HRP Associates were on-site to complete sampling of the deep pool area and downstream sampling in the Naugatuck River. A flat bottomed rowboat was used to move around in the Naugatuck River and a 10 ft. long stainless steel hand auger was used to collect sediment samples as well as probe for depth measurements. In order to identify the deep pool area, HRP moved downstream from side to side, measuring the depth to the bottom. After rowing downstream approximately 650 ft. from the Steele Brook intersection, the deepest area was found to be 100 feet downstream to the south of the hook shaped sandbar. This deep area (as shown on Figure 2) was assumed to be the deep pool area mentioned by the CT-DEP. The description of the deep pool given by the CT-DEP Sampling location #1 at outfall pipe to Steele Brook Sampling location #8 looking upstream at Steele Brook Sample location #9 looking downstream of Steele Brook at Route 8 overpass Looking downstream of Steele Brook at intersaction of Naugatuck River referenced only a deep pool located downstream of the Steele Brook intersection with a large piece of machinery or car located below the water's surface in this area. Our site investigation revealed no discarded large machinery in the river or deeper location in the 650 ft. stretch of river below the Steele Brook intersection. Therefore sample #16 was collected from the deep pool identified above. Samples #17 and #18 were both collected downstream 150 ft. and 200 ft., respectively, from the identified deep pool. # 2.2 Sediment Sampling Results All of the sediment samples collected on November 18 and 23, 1993 were submitted to a State of Connecticut certified laboratory for analysis of copper, lead, nickel, and zinc by mass analysis. These results are presented on Table 1. Copies of the laboratory reports are provided in Appendix A. TABLE 1 # STEELE BROOK/NAUGATUCK RIVER SEDIMENT SAMPLING RESULTS MacDermid, Inc. 526 Huntingdon Avenus Waterbury, Connecticut			Waterbury, Connecticut Sampling
Associates, Inc. 167 New Britain Avenue Plainville, CT 06062 F ne: 203-793-6899 HRP	Place & Addr	ess of Collectic	n /
χ	X	×	X
Disposal Guidelines". Approximately 550 ft³ of soil was excavated, and is being stored in 55 gallon drums pending disposal. If you have any questions, please advise. Very truly yours, Brian G. Murray, P.E. BGM:bn Attach. A. When investigating sites where soil contamination has occurred, the Department must determine whether or not contaminated soils should be excavated and disposed of. Sail removal will depend primarily upon the specific contaminants present and the ground and surface water classifications at the site. The Department's purpose in equiring soil removal is to safeguard human health and the environment by removing and thereby eliminating potential sources of pollution. To achieve this objective the Department has developed the following guidance regarding soil removal and disposal. ## I. Metals and Cyanides The extent of heavy metal and cyanide contamination in soils is determined by the EP Toxicity test (40CFR, Part 261, Appendix II). In areas having groundwater classification goals of G_{AA} or G_A all soils having metal or Cyanide concentrations that exceed established drinking water standards must be excavated and removed. Soils having concentrations up to thirty (30) times drinking water or human health standards are classified as "contaminated soil" and can be transported by a general contractor to a solid waste disposal facility approved by the Department of Environmental Protection. Soils with levels above 30 times the drinking water standard or human health standards are considered to be "hazardous waste" and must be manifested and transported by a licensed hazardous waste transporter for disposal in a permitted hazardous waste disposal facility. In areas having groundwater classification goals of G_B, all soils tested and found to be hazardous, must be excavated and disposed of in the above described fashion. Soils tested and found to contain levels between 10 x's and 30 x's drinking water standards can be approved to a permitted solid waste disposal areas in the above described fashion. Soils tested and found to contain levels of metals between drinking waste standards and ten times (10 x's) these standards and/or found to be at or below background levels may on a case by case basis be left in place. In these situations a post-closure case, maintenance, and monitoring program may be required. # II. Hydrocarbon The extent of hydrocarbon contamination in soil is determined by the appropriate analytical method detailed in Environmental Protection Agency Manual SW-846. In areas having groundwater classification goals of G or GAA all soils having hydrocarbon above the published Suggested No Adverse Response Levels (SNARL's) shall be excavated and disposed of. Soils where it is found that the sum of all hydrocarbons exceed 50ppm will be considered hazardous waste and must be manifested and transported by a permitted hazardous waste transporter to a permitted hazardous waste disposal site. Appendix I lists the contaminant and the specific analytical test reference which must be done in all cases. In addition, on a site by site basis an anlysis for contaminants listed in MOCFR Part 261, Appendix VIII may also be requested and included in the sum. Soils containing less than the 50ppm of total hydrocarbons but greater than the SNARLS shall be considered contaminated and can be excavated and disposed of by a general contractor at a DEP approved Solid Waste disposal facility. In areas having a groundwater classification goal of G_B where historic contamination is in evidence or suspected and where adjacent surface water bodies are classed B or lower, representative background samples, agreed upon by representatives of Department of Environmental Protection, shall be obtained and used as the basis for the excavation standard. When background hydrocarbon concentrations are found which exceed SNARLS but are below the 50ppm level, these soils may, on a case by case basis, be left in place. In these situations a post-closure care, maintenance and monitoring program may be required. ## III Notes: - 1. This document is intended to provide general guidance for most soil contamination incidents. Since each site is evaluated on a case by case costs, Remedial Action not identified in this document may be required. - 2. Excavations generally will not extend far below the water table due to soil instability; the depth of excavation below the water table will be determined on a case by case basis. - 3. Excavations generally will not extend below proven barriers to contaminant movement such as clay, silt lenses, or termination of soil at the bedrock surface. - 4. In fine grained silt and/or clay soils, the EP Toxicity procedure can result in high lead concentrations which may not accurately reflect the true hazard of these soils. These results will be reviewed on a case by case basis considering such factors as probable source, grain size analysis, and, or mass analysis data. - Safety and practical restrictions regarding the depth of excavation will be considered. - 6. Background quality. In lieu of complete removal of soils for the above reasons or if it appears that substantial quantities of hazardous constituents have migrated to the groundwater, the State may require an on-going monitoring program. At such time that the contaminants involved or the degradation of products exceed acceptable levels in the monitoring network further remedial actions may be required. 7. Accutely toxic wastes or wastes that are not included in the Appendix will be evaluated on a case by case basis. # METHOD BOZO # AROMATIC VOLATILE ORGANICS Benzene Chlorobenzene 1,2-Dichlorobenzene 1.3-Dichlorobenzene 1,4-Dichlorobenzene · / Ethyl benezene Toluene Xylenes (Dimethyl benzenes) V = Method 602 Purgenth Annutius Method 624 Purgentles # METHOD 8015 # NONHALOGENATED VOLATILE ORGANICS Acrylamide Carbon disulfide Diethyl ether Methyl ethyl ketone (MEK) 2-Chloroethyl vinyl ether Chloromethyl methyl ether Dibromochloromethane Chloromethane Chlorotoluene Dipromomethane Methyl isobutyl ketone (MIBK) Paraldehyde (trimer of acetaldehyde) ## HETHOD 8010 # HALOGENATED VOLATILE ORGANICS J. . Middle Lot Benzyl chloride · / 1,2-Dichlorobenzene Parojeste Halocarous Bis (2-chloroethoxy) methane · / 1,3-Dichlorobenzene Bis (2-chloroisopropy I) tether 1,4-Dichlorobenzene Bromobenzene Dichlorodifluoromethane Bromodichloromethane 1,1-Dichloroethane Bromoform 1,2-Dichloroethane Bromomethane 1,1-Dichloroethylene (Vinylidene Chloride) Carbon Tetrachloride · / trans-1,2-Dichloroethylene Chloracetaldehyde Dichloromethane (methyline interiols) Chloral 1,2-Dichloropropane Chlorobenzene 1,3-Dichloropropylene Chloroethane 1,1,2,2-Tetrachloroethane Chloroform 1,1,1,2-Tetrachloroethane 1-Chlorohexane Tetrachloroethylene 1,1,1-Trichloroethane - /- I_1_2-Trichloroethane Trichlorostnylene * / Trichlorofluoromethane Prichloropropane / Winyl chloride ## STATE OF CONNECTICUT DEPARTMENT OF HEALTH SERVICES SNARLS #### VOLATILE ORGANICS ACTION LEVELS The Department of Health Services uses Public Health Code Regulation 19-13-B102 and the following list to determine the potability of drinking mater supplies. The concentrations given are action levels and are expressed in micrograms per liter.	SOMPO UND		
-------------------	----------	----------	----------
your approval to backfill and close the area without further excavation. I will call you in a few days to discuss this matter further. If you have any questions in the meantime, please advise. Very truly yours, Brian G. Murray / afth Brian G. Murray CC: Cherrie Gillis, MacDermid # BARON CONSULTING CO. HARRY AGAHIGIAN, Ph.D., DIRECTOR # analytical services P.O. BOX 663, ORANGE CT. 06477 April 6, 1988 To: Mr Brian Murry Industrial Pollution Control 39 Riverside Avenue Westport, CT 06880 RECEIVED APR 8 1988 Ans'd.... Re: Analysis of 2 soils Project #1471 BC# 58727 The samples were analyzed as per EPA methods 8010, 8015 and 8020. Results are listed on the following pages in ppb: Please call me if you have any questions. David Ditta, Chemist Senior Consultant DD/dc encl #### EPA METHOD 8010 HALOGENATED VOLATILE ORGANICS ject #1471 BC# 58727 Results are in ppb	Resu	lts are in ppb	1471E
Recycling			Area (around original sample 012)
of non-volatile constituents listed under 40 CFR Part 264, Appendix IX. Step 9: The samples were submitted to a certified laboratory for analysis. All samples were accompanied with a chain-of-custody. Based on the December 1999 Appendix IX sampling results (see Appendix C), the following additional hazardous constituents or "constituents of concern" were identified for each storage/recycling area undergoing closure:	Former Flammable	Former NMP	Former Solder Stripper
			B005
13.4.3.3 of 1994 Closure Plan).		CC015	Selected judgmental – stained/corroded areas (Section 13.4.3.3 of 1994 Closure Plan).
2-Butanone (MEK)	900	1.0	
0.01 | | | (soil 1' below | Cadmium, Solid | 5.8 mg/kg | 34 | | | | B005) | Chromium, Leachate | ND<0.040 mg/l | | 0.05 | | | | Copper, Leachate | 0.64 mg/l | | 1 | | | | Copper, Solid | 370 mg/kg | 2500 | | | | | Lead, Solid | 96 mg/kg | 500 | | | | | Tin, Leachate | 0.24 mg/l | | 4.2 | | | | Trichloroethylene | ND<0.010mg/kg | 32 | 0.0032 | 0.007 | | | | | | | | | B007 - Solder St. 2 | Cadmium, Leachate | ND<0.010 mg/l | | 0.01 | | | (soil 1' below | Cadmium, Solid | 5.2 mg/kg | 34 | | | | original 004) | Chromium, Leachate | | | 0.05 | 1 | | | Copper, Leachate | 0.92 mg/l | · · · · · · · · · · · · · · · · · · · | 1 | | | | Copper, Solid | 2100 mg/kg | 2500 | <u> </u> | | | | Lead, Solid | 24 mg/kg | 500 | | | | | Tin, Leachate | 0.58 mg/l | | 4.2 | 1 | | | Trichloroethylene | ND<0.010mg/kg | 32 | 0.0032 | 0.007 | # FEBRUARY 9, 2000 SUBSURFACE SAMPLING RESULTS FOR THE FORMER SOLDER STRIPPER RECYCLING AREA MacDermid, Inc 526 Huntingdon Avenue Waterbury, CT HRP #MAC-0030.RC | Sample | Parameter | Result | Direct Exposure | Leachate Standard | |-------------------------|---------------------|--------------------------------|-----------------|-------------------| | (Type) | | (mg/l) | Standard (mg/l) | (mg/l) | | 0010 0 1011 | 6.4. | | | | | B010 - 2nd Slab | Cadmium, Leachate | | | 0.01 | | (concrete slab | Cadmium, Solid | 75 mg/kg∗37; | 34 | | | SE of original 012) | Nickel, Solid | 420 mg/kg | 360 | · | | · | | | | | | B011 - 2nd Slab | Cadmium, Leachate | 0.028 mg/l | | 0.01 | | (concrete slab | Cadmium, Solid | ::585 mg/kg 🎥 | 34 | | | NW of original 012) | Nickel, Solid | ≨# 400 mg/kg 💯 | 360 | | | | | | | | | B012 - 2nd Slab | Cadmium, Leachate | | | 0.01 | | (concrete slab | Cadmium, Solid | 110 mg/kg | 34 | | | NE of original 012) | Nickel, Solid | 450 mg/kg | 360 | | | | | | | | | 3 | Cadmium, Leachate | 0.025 mg/l | | 0.01 | | (surface soil below | Cadmium, Solid | 15 mg/kg | 34 | | | original 012 (1/13/00)) | Nickel, Solid | 72 mg/kg | 360 | | | | | | | | | Trip Blank | Cadmium | ND<0.010 mg/l | | | | | Chromium | ND<0.040 mg/l | · | | | | Copper | ND<0.030 mg/l | | | | · | Lead | ND<0.050 mg/l | | | | • | Nickel | ND<0.020 mg/l | | | | | Tin | ND<0.010 mg/l | | | | , . | Zinc | 0.023 mg/l | | | | | Tetrachloroethylene | ND<0.0005 mg/l | | | | | Trichloroethylene | ND<0.005 mg/l | | | | Equipment Blank | Cadmium | ND<0.010 mg/l | | | | Edaibineur pieur | Chromium | ND<0.040 mg/l | | | | | Copper | ND<0.040 mg/l | | | | - | | | | | | | Lead
Nickel | ND<0.050 mg/l
ND<0.020 mg/l | | <u> </u> | | } | Tin | | | | | | | ND<0.010 mg/l | | | | | Zinc | 0.018 mg/l | | | | · . | Tetrachloroethylene | ND<0.0005 mg/l | | | | ND = Not Detected | Trichloroethylene | ND<0.005 mg/l | | | ND = Not Detected Shaded result exceeded the closure standard # APRIL 23-28, 2000 SUBSURFACE SAMPLING RESULTS FOR THE FORMER ## SOLDER STRIPPER RECYCLING AREA (around original sample 004) MacDermid, Inc. 526 Huntingdon Avenue Waterbury, CT HRP #MAC0030.RC | Sample
(Type) | Parameter | Result | Direct
Exposure
Standard
(mg/kg) | Leachate
Standard
(mg/l) | Computed/
Leachate (mg/l)
Concentration
(result / 20) | |---|--------------------------|-----------------|---|--------------------------------|--| | B007A - Solider St.
2 (soil 2' below 004) | Chromium , Leachate | 0.028 mg/l | | 0.05 | | | | Cadmium, Leachate | 0.0074 mg/l | | 0.01 | | | | Cadmium, Solid | 13 mg/kg | 34 | | | | B013A – Solder St. 2 | Chromium, Leachate | ND <0.02 mg/l | | 0.05 | | | (surface soil 4' NE of | Copper, Solid | 99 mg/kg | 2500 | | | | 004) | Lead, Solid | 48 mg/kg | 500 | | | | | Tin, Leachate | ND <0.01 mg/l | | 4.2 | | | | Trichloroethylene, Solid | 0.0007 mg/kg | 32 | 0.0032 | 0.000035 ¹ | | | Cadmium, Leachate | 0.0061 mg/l | | 0.01 | | | | Cadmium, Solid | 13 mg/kg | 34 | | | | 00400 0-11-010 | Chromium, Leachate | ND <0.020 mg/l | | 0.05 | | | B013B – Solder St. 2
(soil 1' below B013A) | Copper, Solid | 86 mg/kg | 2500 | • | | | (SOIL F DEIOW DO TON) | Lead, Solid | 51 mg/kg | 500 | | | | e. | Tin, Leachate | 0.027 mg/l | | 4.2 | | | | Trichloroethylene, Solid | 0.0017 mg/kg | 32 | 0.0032 | 0.0000851 | | | Cadmium, Leachate | 0.0075 mg/l | | 0.01 | | | · | Cadmium, Solid | 8.2 mg/kg | 34 | | | | B014A – Solder St. 2 | Chromium, Leachate | ND <0.020 mg/l | | 0.05 | | | (surface soil 4' NW | Copper, Solid | 72 mg/kg | 2500 | | | | B001) | Lead, Solid | 40 mg/kg | 500 | | | | • . | Tin, Leachate | ND <0.010 mg/l | | 4.2 | | | | Trichloroethylene, Solid | 0.0052 mg/kg | 32 | 0.0032 | 0.00026 ¹ | | | Cadmium, Leachate | 0.0067 mg/l | | 0.01 | | | | Cadmium, Solid | 21 mg/kg | 34 | | | | B014B – Solder St. 2 | Chromium, Leachate | ND <0.020 mg/l | | 0.05 | | | (soil 1' below B014A) | Copper, Solid | 150 mg/kg | 2500 | | | | (0011 1 001041 00 17/1) | Lead, Solid | 60 mg/kg | 500 | | | | | Tin, Leachate | ND < 0.010 mg/l | | 4.2 | | | | Trichloroethylene, Solid | 0.0055 mg/kg | 32 | 0.0032 | 0.000275 ¹ | # TABLE 7 (continued) # APRIL 23-28, 2000 SUBSURFACE SAMPLING RESULTS FOR THE FORMER ## SOLDER STRIPPER RECYCLING AREA (around original sample 004) MacDermid, Inc. 526 Huntingdon Avenue Waterbury, CT HRP #MAC0030.RC | Sample
(Type) | Parameter | Result | Direct
Exposure
Standard
(mg/kg) | Leachate
Standard
(mg/l) | Computed/
Leachate (mg/l)
Concentration
(result / 20) | |--|--------------------------|--------------------|---|--------------------------------|--| | | Cadmium, Leachate | 0.006 mg/l | | 0.01 | | | | Cadmium, Solid | 15 mg/kg | 34 | | | | 015A - Solder St. 2 | Chromium, Leachate | ND <0.020 mg/l | | 0.05 | | | (surface soil 4' NW | Copper, Solid | 560 mg/kg | 2500 | | | | 004) | Lead, Solid | 61 mg/kg | 500 | | | | · · | Tin, Leachate | 0.1 mg/l | | 42 . | | | | Trichloroethylene, Solid | 0.018 mg/kg | 32 | 0.0032 | 0.0009 ¹ | | | Cadmium, Leachate | 0.0067 mg/l | | 0.01 | | | | Cadmium, Solid | 16 mg/kg | . 34 | | | | | Chromium, Leachate | ND <0.020 mg/l | | 0.05 | | | B015B – Solder St. 2 (soil 1' below B015A) | Copper, Solid | 380 mg/kg | 2500 | | | | (SOIL I DEIOW BO 13A) | Lead, Solid | 83 mg/kg | 500 | | | | Ì | Tin, Leachate | ND <0.010 mg/l | | 4.2 | | | | Trichloroethylene, Solid | 0.018 mg/kg | 32 | 0.0032 | 0.0009 ¹ | | | Cadmium, Leachate | 0.0054 mg/l | | 0.01 | | | , | Cadmium, Solid | 18 mg/kg | 34 | | | | B016A- Solder St. 2 | Chromium, Leachate | ND <0.020 mg/l | | 0.05 | | | (surface soil 4' NW | Copper, Solid | 210 mg/kg | 2500 | | | | B003) | Lead, Solid | 220 mg/kg | 500 | · | | | | Tin, Leachate | 0.015mg/l | | 4.2 | | | | Trichloroethylene, Solid | 0.039 mg/kg | 32 | 0.0032 | 0.00195 ¹ | | | Cadmium, Leachate | .v./4, 0.015 mg/l⊡ | | 0.01 | | | | Cadmium, Solid | 14 mg/kg | 34 | | | | | Chromium, Leachate | ND <0.020 mg/l | | 0.05 | | | B016B - Solder St. 2 (soil 1' below B016A) | Copper, Solid | 110 mg/kg | 2500 | · | | | (2011) DEIOM DO TON) | Lead, Solid | 95 mg/kg | 500 | | | | | Tin, Leachate | 0.018 mg/l | | 4.2 | | | | Trichloroethylene, Solid | 0.014 mg/kg | 32 | 0.0032 | 0.00071 | ## TABLE 7 (continued) ## APRIL 23-28, 2000 SUBSURFACE SAMPLING RESULTS FOR THE FORMER ## SOLDER STRIPPER RECYCLING AREA (around original sample 004) MacDermid, Inc. 526 Huntingdon Avenue Waterbury, CT HRP #MAC0030.RC | Sample
(Type) | Parameter
, | Result | Direct
Exposure
Standard
(mg/kg) | Leachate
Standard
(mg/l) | Computed/
Leachate (mg/l)
Concentration
(result / 20) | |---|--------------------------|-----------------|---|--------------------------------|--| | | Cadmium, Leachate | ND <0.005 mg/l | | 0.01 | | | | Cadmium, Solid | 15 mg/kg | 34 | | | | B017A – Solder St. 2 | Chromium, Leachate | 0.033 mg/l | | 0.05 | | | (surface soil 1.5' S of | Copper, Solid | 210 mg/kg | 2500 | | | | B016A) | Lead, Solid | 310 mg/kg | 500 | | | | | Tin, Leachate | ND <0.010 mg/l | | 4.2 | | | | Trichloroethylene, Solid | 0.015 mg/kg | 32 | 0.0032 | 0.00075 ¹ | | | Cadmium, Leachate | 0.016 mg/l | | 0.01 | | | | Cadmium, Solid | -4 36 mg/kg | 34 | | | | B017B - Solder St. 2 | Chromium, Leachate | ND <0.02 mg/l | | 0.05 | | | (surface soil 1' below | Copper, Solid | 470 mg/kg | 2500 | | | | B017A) | Lead, Solid | 150 mg/kg | 500 | | | | | Tin, Leachate | 0.032 mg/l | | 4.2 | | | | Trichloroethylene, Solid | 0.02 mg/kg | - 32 | 0.0032 | 0.0011 | | | Cadmium, Leachate | ND <0.005 mg/l | * . | 0.01 | | | | Cadmium, Solid | 4.3 mg/kg | 34 | | | | B018A – Solder St. 2 | Chromium, Leachate | ND <0.02 mg/l | | 0.05 | | | (surface soil 3' SE of 004 – other side of | Copper, Solid | 43 mg/kg | 2500 | | | | wall) | Lead, Solid | 44 mg/kg | 500 | | | | . (| Tin, Leachate | ND <0.010 mg/l | | 4.2 | | | | Trichloroethylene, Solid | ND <0.010 mg/kg | 32 | 0.0032 | 0.0005 ¹ | | · | Cadmium, Leachate | 0.0083 mg/l | | 0.01 | · | | | Cadmium, Solid | 3.6 mg/kg | 34 | | , | | D040D 0-1404-0 | Chromium, Leachate | 0.024 mg/l | | 0.05 | | | B018B – Solder St. 2
(soil 1' below B018A) | Copper, Solid | 52 mg/kg | 2500 | | | | (3011 1 DEION DO TON) | Lead, Solid | 20 mg/kg | 500 | | | | · · | Tin, Leachate | 0.032 mg/l | | 4.2 | · · · · · · · · · · · · · · · · · · · | | | Trichloroethylene, Solid | 0.0042 mg/kg | 32 | 0.0032 | 0.00021 ¹ | ND = Not Detected ¹ Mass concentration (mg/kg) was divided by 20 to determine the maximum leachate concentration (mg/l). Shaded result exceeded its closure standard. ## TABLE 7 (continued) APRIL 23-28, 2000
SUBSURFACE SAMPLING RESULTS FOR THE FORMER SOLDER STRIPPER RECYCLING AREA (around original sample 004) MacDermid, Inc. 526 Huntingdon Avenue Waterbury, CT HRP #MAC0030.RC | Sample
(Type) | Parameter | Result | Direct
Exposure
Standard
(mg/kg) | Leachate
Standard
(mg/l) | Computed/
Leachate (mg/l)
Concentration
(result / 20) | |------------------|---------------------|----------------|---|--------------------------------|--| | | Cadmium | ND <0.005 mg/l | | | | | | Copper | ND <0.001 mg/l | | · | | | Tria Blook | Lead | ND <0.05 mg/l | | | | | Trip Blank | Nickel | ND <0.002 mg/l | | | | | , | Trichloroethylene | ND <0.005 mg/l | | | | | | Tetrachloroethylene | ND <0.005 mg/l | | | | | | Cadmium | ND <0.005 mg/l | | | | | | Copper | ND <0.001 mg/l | | ŕ | | | Contract Block | Lead | ND <0.05 mg/l | | 1 | | | Equipment Blank | Nickel | ND <0.002 mg/l | | | | | | Trichloroethylene | ND <0.005 mg/l | | | | | | Tetrachloroethylene | ND <0.005 mg/l | | | | # APRIL 26-28 2000 SUBSURFACE SAMPLING RESULTS FOR THE FORMER SOLDER STRIPPER RECYCLING AREA (around original sample 012) MacDermid, Inc. 526 Huntingdon Avenue Waterbury, CT HRP #MAC0030.RC | Sample | Parameter | Result | Direct Exposure
Standard | Leachate
Standard | |--|-------------------|----------------------------|-----------------------------|----------------------| | B019A – soil (soil 1'
below original 012) | Cadmium, Leachate | 0.02 mg/l := | | 0.01 mg/l | | B020A – 2 nd Slab | Cadmium, Leachate | 0.04 mg/l | | 0.01 mg/l | | (concrete slab 3.5' SE | Cadmium, Solid | 83 mg/kg | 34 mg/kg | | | of original 012) | Nickel, Solid | 360 mg/kg | 360 mg/kg | | | B021A – 2 nd Slab | Cadmium, Leachate | 0.37 mg/l | | 0.01 mg/l | | (concrete slab 4' NE of | Cadmium, Solid | 75 mg/kg | 34 mg/kg | | | B020A) | Nickel, Solid | .450 mg/kg | 360 mg/kg | | | B022A – 2 nd Slab | Cadmium, Leachate | 0.029 mg/l | | 0.01 mg/l | | (concrete slab 4' NE of | Cadmium, Solid | 79 mg/kg | 34 mg/kg | | | original 012) | Nickel, Solid | 320 mg/kg | 360 mg/kg | | | | Cadmium, Leachate | * 0.011 mg/l _{*/} | · | 0.01 mg/l | | B023A – soil (surface soil 4' NW of B022A) | Cadmium, Solid | 18 mg/kg | 34 mg/kg | | | 3011 - 1477 31 5025 17 | Nickel, Solid | 130 mg/kg | 360 mg/kg | | | B024A – 2 nd Slab – | Cadmium, Leachate | 6:012 mg/l | | 0.01 mg/l | | (concrete slab 4' NW | Cadmium, Solid | / 58 mg/kg | 34 mg/kg | • | | of original 012) | Nickel, Solid | 110 mg/kg | 360 mg/kg | | # JUNE 13 2000 SUBSURFACE SAMPLING RESULTS FOR THE FORMER SOLDER STRIPPER RECYCLING AREA (around original sample 012) MacDermid, Inc. 526 Huntingdon Avenue Waterbury, CT HRP #MAC0030.RC | Sample | Parameter | Result | Direct Exposure
Standard | Leachate
Standard | |---------------------------------|-------------------|-------------|-----------------------------|----------------------| | | Cadmium, Leachate | | · | 0.01 mg/l | | B020B – Soil | Cadmium, Solid | 3.1 mg/kg | 34 mg/kg | | | (beneath concrete sample B020A) | Nickel, Solid | 15 mg/kg | 360 mg/kg | | | gample Bezerty | Nickel, Leachate | 0.33 mg/l | | 0.7 mg/l | | | Cadmium, Leachate | 0.0077 mg/l | | 0.01 mg/l | | B021B – Soil | Cadmium, Solid | 5.2 mg/kg | 34 mg/kg | | | (beneath concrete sample B021A) | Nickel, Solid | 25 mg/kg | 360 mg/kg | | | dampio 202 ir iy | Nickel, Leachate | 0.02 mg/l | | , 0.7 mg/l | | | Cadmium, Leachate | <0.005 mg/l | | 0.01 mg/l | | B022B – Soil | Cadmium, Solid | 5.1 mg/kg | 34 mg/kg | | | (beneath concrete sample B022A) | Nickel, Solid | 19 mg/kg | 360 mg/kg | | | Sample Bozzi () | Nickel, Leachate | 0.099 mg/l | | 0.7 mg/l | | · | Cadmium, Leachate | 0.021 mg/l | | 0.01 mg/l | | B024B – Soil | Cadmium, Solid | 3.5 mg/kg | 34 mg/kg | | | (beneath concrete sample B024A) | Nickel, Solid | 30 mg/kg | 360 mg/kg | | | 52p.6 252y | Nickel, Leachate | 0.48 mg/l | | 0.7 mg/l | Shaded result exceeded its closure standard. ## SUMMARY OF CONCRETE CHIP SAMPLING RESULTS FOR THE FORMER ## FLAMMABLE STORAGE AREA MacDermid, Inc. 526 Huntingdon Avenue Waterbury, CT HRP #MAC0030.RC ## January 13, 2000 | Sample
(Type) | ['] Parameter | Result | Direct
Exposure
Standard
(mg/kg) | Leachate
Standard
(mg/l) | Computed/
Leachate (mg/l)
Concentration
(result / 20) | |----------------------------|------------------------|------------|---|--------------------------------|--| | 005 – Flammable | | | | ļ | | | Storage (chip sam- | Trichloroethylene | 1.4 mg/kg | 69 | 0.0069 | 0.07 | | ple) | Tetrachloroethylene | 0.12 mg/kg | 32 | 0.0032 | 0.006 | | 007 – Flammable | | | | | | | Storage (chip sam-
ple) | Chromium, Leachate | 0.27 mg/l | | 0.05 | | ## February 9, 2000 | · Sample
(Type) | Parameter | Result | Direct Exposure
Standard
(mg/kg) | Leachate Standard
(mg/l) | |--|----------------------------------|----------------|--|-----------------------------| | CC008 – Flammable
Storage (chip sam-
ple 6" NW of original | Trichloroethylene,
Leachate | 0.011 mg/l | | 0:0069 | | 005) | Tetrachloroethylene,
Leachate | ND <0.010 mg/l | | 0.0032 | | CC009 - Flammable | | | | | | Storage (chip sam-
ple 6" NW of original
007) | Chromium, Leachate | ND<0.010 mg/l | | 0.05 | ## April 26, 2000 | Sample
(Type) | Parameter | Result | Leachate Standard (mg/l) | |---------------------------|-------------------------------|-------------|--------------------------| | CC010 - Flammable Stor- | | | | | age (chip sample 6* NW of | Tetrachloroethylene, Leachate | 0.0022 mg/l | 0.0032 | | original 005) | | | | ND = Not Detected Shaded result exceeded its closure standard. ## SUMMARY OF CONCRETE CHIP SAMPLING RESULTS (CLOSURE EXCEEDANCES) FOR THE FORMER NMP RECYCLING AREA MacDermid, Inc. 526 Huntingdon Avenue Waterbury, CT HRP #MAC0030.RC August 10, 2000 | Sample | Parameter | Result | Direct Exposure
Standard (mg/kg) | Leachate Standard (mg/l) | |-------------|------------------------------|-----------------------|-------------------------------------|--------------------------| | | | | Otanuaru (mg/kg) | <u> </u> | | CC011 | Chromium, Leachate | 0.11 mg/l | | 0.05 | | · | Zinc, Leachate | 5.4 mg/l | | 5.0 | | 0.0004 | | 0.70 " | · | | | CC021 | Nickel, Leachate | 0.72 mg/l | | 0.7 | | | Zinc, Leachate | 7.1 mg/l | | 5.0 | | CC022 | Chromium, Leachate | 0.87 mg/l | | 0.05 | | | Zinc, Leachate | 6.4 mg/l | | 5.0 | | CC033 | Chromium, Leachate | 0.11 mg/l | | 0.05 | | CC023 | Zinc, Leachate | 0.11 mg/l
7.6 mg/l | | 5.0 | | | Ziric, Leacriate | 7.6 mg/i | | 5.0 | | CC024 | Chromium, Leachate | 0.4 mg/l | | 0.05 | | CC025 | Zinc, Leachate | 6.8 mg/l | | 5.0 | | CC026 | Chromium, Leachate | 0.36 mg/l | | 0.05 | | CC027 | Chromium, Leachate | 0.057 mg/l | | 0.05 | | CC028 | Chromium, Leachate | 0.062 mg/l | | 0.05 | | | Bis (2-ethylhexyl) phthalate | 64 mg/kg | 44 | | | | Oct | ober 3, 2000 | · | <u> </u> | | CC030 | Chromium, Leachate | 0.053 mg/l | | 0.05 | | | Omorniam, Ecochate | 0.000 mg/s | | 0.00 | | CC032 | Chromium, Leachate | 0.37 mg/l | | 0.05 | | | Zinc, Leachate | 5.2 mg/l | | 0.05 | | CC033 | Chromium, Leachate | 0.37 mg/l | | 0.05 | | | | 0.01 mg. | | 0.00 | | CC034 | Chromium, Leachate | 0.069 mg/l | | 0.05 | | CC035 | Chromium, Leachate | 0.15 mg/l | | 0.05 | | CC036 | Chromium, Leachate | 0.11 mg/l | | 0.05 | | CC037 | Chromium, Leachate | 0.13 mg/l | | 0.05 | # SUMMARY OF CONCRETE CHIP SAMPLING RESULTS FOR THE FORMER SOLDER STRIPPER RECYCLING AREA MacDermid, Inc. 526 Huntingdon Avenue Waterbury, CT (HRP #MAC-0030.RC) | Sample Number | Parameter | Result (mg/l) | Leachate Standard (mg/l) | |-------------------|--------------------|---------------|--------------------------| | CC016 | Cadmium, Leachate | ND <0.005 | 0.01 | | | Chromium, Leachate | ND <0.02 | 0.05 | | | Nickel, Leachate | 0.051 | 0.7 | | | Zinc, Leachate | 0.051 | 5.0 | | CC017 | Cadmium, Leachate | 0.01 | 0.01 | | | Chromium, Leachate | ND <0.02 | 0.05 | | | Nickel, Leachate | 0.07 | 0.7 | | | Zinc, Leachate | 0.52 | 5.0 | | CC018 | Cadmium, Leachate | ND <0.005 | 0.01 | | | Chromium, Leachate | ND <0.02 | 0.05 | | | Nickel, Leachate | 0.051 | 0.7 | | | Zinc, Leachate | 0.91 | 5.0 | | CC019 | Cadmium, Leachate | ND < 0.005 | 0.01 | | | Chromium, Leachate | ND < 0.02 | 0,05 | | | Nickel, Leachate | 0.044 | 0.7 | | | Zinc, Leachate | 1.3 | 5.0 | | CC020 | Cadmium, Leachate | ND < 0.005 | 0.01 | | | Chromium, Leachate | ND <0.02 | 0.05 | | · · | Nickel, Leachate | 0.049 | 0.7 | | | Zinc, Leachate | 0.79 | 5.0 | | ND = Not Detected | | | - | **FIGURES** e\rdm\m\rcra closure summary HRP 0 -- 0 ## US EPA New England RCRA Document Management System Image Target Sheet | | nt ID #100825 | | |------------------|----------------------|----------------------------------| | Facility Name: | MACDERMID I | NC . | | Facility ID#: | CTD001164599 | | | Phase Classifica | ntion: <u>R-1B</u> | | | Purpose of Targ | get Sheet: | | | [X] Oversized | (in Site File) [|] Oversized (in Map Drawer) | | [] Page(s) M | lissing (Please Spec | ify Below) | | [] Privileged | ı (| Other (Provide
Purpose Below) | | | | | | Description of C | Oversized Materia | l, if applicable: | ^{*} Please Contact the EPA New England RCRA Records Center to View This Document * ## US EPA New England RCRA Document Management System Image Target Sheet | ALL IVIN DOCU | ment ID # <u>10082</u> | 5 | | | |---------------|------------------------|--------------|----------------------------------|------------| | Facility Nam | e: <u>MACDERMI</u> | <u>D INC</u> | | | | Facility ID#: | CTD001164599 | <u> </u> | | | | Phase Classif | fication: R-1B | | | | | Purpose
of T | arget Sheet: | | | | | [X] Oversiz | zed (in Site File) | [] | Oversized (in Ma | ap Drawer) | | [] Page(s) |) Missing (Please S | pecify I | Below) | | | [] Privile | ged | [] | Other (Provide
Purpose Below) | | | • | of Oversized Mate | ŕ | | | | | | | | | ^{*} Please Contact the EPA New England RCRA Records Center to View This Document * ## APPENDIX A TCLP Analysis of Metal Hydroxide/Sulfide Sludge e\rdm\m\rcra closure summary HRP Ameriater Inc. 911 Bridgeport Avenue 900 Shelton Plaza Shelton, CT 06484 Tel: (203) 925-1133 Fax: (203) 925-1140 e-mail: comenvtst@aol.com July 22, 1999 Mr. Roger Bellmore R.M. Jones & Company 34 Ronzo Road Bristol, CT 06010 Project MacDermid Project #: WWT-2 CET #: 99070310 Solid: WWT Sludge Collection Date(s): 07/13/99 ## PREP ANALYSIS: Ultasonic Extraction [EPA 3550B] | Otrasome Director | ** [22,12,000,00] | |----------------------|----------------------| | | WWT Sludge | | Ultasònic Extraction | Completed [07/16/99] | | ICLP, Metals | [EPA 1311] | |--------------|----------------------| | | WWT Sludge | | TCLP, Metals | Completed [07/14/99] | ## **ANALYSIS:** TCLP Mercury [EPA 245.2] Units: mg/l Analysis Date: 07/16/99 | | WWT Sludge | |--------------|------------| | TCLP Mercury | ND < 0.002 | #### NOTES: [] Indicates Date Prep Test Completed; ND is Not Detected. Project#: WWT-2 Cer#: 99070310 Project MacDermid - 2 - July 22, 1999 Moisture Content [EPA 8260] Units: % Analysis Date: 07/15/99 WWT Sludge Moisture Content 49 Paint Filter Test [EPA 9095] Units: Std. units Analysis Date: 07/14/99 | | WWT Sludge | |-------------------|----------------| | Paint Filter Test | No Free Liquid | pH [EPA 9045C] Analysis Date: 07/14/99 | | WWT Sludge | |----|------------| | pН | 7.66 | TCLP Metals [EPA 6010] Units: mg/L Analysis Date: 07/14/99 | | WWT Sludge | |----------|------------| | Lead | 0.017 | | Selenium | ND < 0.01 | | Cadmium | ND < 0.005 | | Chromium | ND < 0.05 | | Arsenic | 0.36 | | Bacium | 0.33 | | Silver | ND < 0.02 | #### **APPENDIX B** Table 13.1 of 1994 Hazardous Waste Closure Plan e\rdm\m\rcra closure summary HRP #### TABLE 13.1 # CLOSURE PERFORMANCE STANDARD FOR EACH HAZARDOUS CONSTITUENT #### MACDERMID, INC. 526 HUNTINGDON AVENUE WATERBURY, CT | Hazardous Constituent | MCL ^{1,2}
(mg/l) | RSD³
Water
(mg/l) | RSD³
Concrete
(mg/kg) | RFD ⁴
Water
(mg/l) | RFD ⁴
Concrete
(mg/kg) | |--|--|-------------------------|-----------------------------|-------------------------------------|---| | Barium Cadmium Chromium, Total Cyanide Copper Lead Nickel Tin Zinc | 1.0 ⁵ 0.01 ⁵ 0.05 ⁵ 0.2 ⁵ 1.0 ⁶ 0.05 ⁵ 1.0 ⁶ 5.0 ⁶ | | | 2.0

40
0.7

0.7 | 900

20,000
300

300 | | Chlorobenzene | 0.17 | *** | • | 1.0 | 500 | | Ethyl Benzene | 0.17 | | | | | | Isobutanol
Methylene Chloride | 0.025 ⁷ | 0.0047 |
47 | 10.0
2.0 | 5,000
1,000 | | Methyl Ethyl Ketone | 1.07 | | | 2.0 | 900 | | Tetrachioroethylene | 0.027 | 0.0069 | 69.0 | 0.4 | 200 | | Toluene | 1.07 | | | 10.0 | 5,000 | | 1,1,1-Trichloroethane | 0.2 | | | 3.0 | 2,000 | | Trichlorofluoromethane | | | , | 10.0 | 5,000 | | Trichloroethylene | 0.005 | 0.0032 | 32 | | | | Xylene | · . | *** | | | | ¹ Maximum Contaminant Level When MCL's are not available other standards such as Connecticut Volatile Organic Action Levels will be used if available. ^a Risk-Specific Doses Verified Reference Doses U.S. EPA Drinking Water Standard CT Drinking Water Standard ⁷ CT-Volatile Organic Action Level ## **APPENDIX C** December 1999 Appendix IX Laboratory Report e\rdm\m\rcra closure summary HRP Association Inc December 28, 1999 Client: MACDERMID, INC. 245 Freight Street Waterbury, CT 06702- Attention: Mr. Greg Strong EAS Project Number: 3211-99 Sample Number(s): 9913767, 9913768, 9913769, 9913770, 9913771, 9913772 Copies of this report and the supporting computer data are retained in our files in the event they are required for future reference. Any sample submitted to our laboratory will be retained for a maximum of thirty (30) days from receipt of the sample. All analytical data, unless otherwise specified, is reported on a wet weight (as received) basis. Our laboratory is a multi-state Certified Public Health Laboratory, offering a full range of analytical services which include: Drinking Water Analysis Water and Wastewater Analysis Hazardous Waste Analysis (RCRA) Full Priority Pollutant Analysis Field Sampling Gregory C. Lawrence Laboratory Director 105 COMMERCIAL STREET WATERTOWN, CT 06795 PHONE (960) 274-5461 FAX (960) 945-0449 Location Collected: Electro Cells Date Sample Collected: 12/02/1999 Sample Description: CC001 EAS Project Number: 3211-99 EAS Sample Number: 9913767 | | | • | | | |--|---------------|-----------------------|----------------|------------------| | Parameter | Data | Quantitation
Limit | Units | Analysis
Date | | T GET GITTION OF THE STATE T | | | UIIILS | Date | | | | | | | | Volatile Organic Comp. Appendix | IX - Method S | SW-846-8260 | | | | 1,1,1,2-Tetrachloroethane | BQL | 10. | ug/kg | 12/21/99 | | 1,1,1-Trichloroethane | BQL | 10. | ug/kg | 12/21/99 | | 1,1,2,2-Tetrachloroethane | BQL | 10. | ug/kg | 12/21/99 | | 1,1,2-Trichloroethane | BQL | 10. | ug/kg | 12/21/99 | | 1,1-Dichloroethane | BQL | 10. | ug/kg | 12/21/99 | | 1,1-Dichloroethene | BQL | 10. | ug/kg | 12/21/99 | | 1,2-Dibromoethane | BQL | 10. | ug/kg | 12/21/99 | | 1,2-Dichloroethane | BQL | 10. | ug/kg | 12/21/99 | | 1,2-Dichloropropane | BQL | 10. | ug/kg | 12/21/99 | | 1,4-Dioxane | 2200. | 100. | ug/kg | 12/21/99 | | Dibromochloromethane | BQL | 10. | ug/kg | 12/21/99 | | Dibromomethane | BQL | 10. | ug/kg | 12/21/99 | | Dichlorodifluoromethane | BQL | 10. | ug/kg | 12/21/99 | | 2-Hexanone | BQL | 10. | ug/kg
ug/kg | 12/21/99 | | 4-Methyl-2-pentanone | 47 .1 | 10. | ug/kg
ug/kq | 12/21/99 | | Acetone | 150 | 10. | ug/kg
ug/kg | 12/21/99 | | Acetonitrile | BQL | 100. | ug/kg
ug/kg | 12/21/99 | | Acrolein | BQL | 10. | ug/kg
ug/kg | 12/21/99 | | Acrylonitrile | BQL | 10. | ug/kg | 12/21/99 | | Allyl Chloride | BQL | 10. | ug/kg | 12/21/99 | | Benzene | BQL | 10. | ug/kg | 12/21/99 | | Bromodichloromethane | BQL | 10. | ug/kg | 12/21/99 | | Bromomethane | BQL | 10. | ug/kg | 12/21/99 | | Bromoform | BQL | 10. | ug/kg | 12/21/99 | | cis-1,2-Dichloroethene | BQL | 10. | ug/kg | 12/21/99 | | cis-1,3-Dichloropropene | BQL | 10. | ug/kg | 12/21/99 | | Carbon disulfide | BQL | 10. | ug/kg | 12/21/99 | | Carbon tetrachloride | BQL | 10. | ug/kg | 12/21/99 | | Chloroform | BQL | 10. | ug/kg | 12/21/99 | | Chloroprene | BQL | 200. | ug/kg | 12/21/99 | | Chlorobenzene | BOL | 10. | ug/kg | 12/21/99 | | Chloroethane | BQL | 10. | ug/kg | | | Chloromethane | BQL | 10. | | 12/21/99 | | 1,2-Dibromo-3-chloropropane | BQL | 10. | ug/kg | 12/21/99 | | Ethylbenzene | BQL | 10. | ug/kg | 12/21/99 | | Ethyl methacrylate | BQL | 10. | ug/kg | 12/21/99 | | Iodomethane | BQL | 10. | ug/kg | 12/21/99 | | iso-Butanol | BQL | 200. | | 12/21/99 | | 100 2004 | ~2.0 | 200. | ug/kg : | 12/21/99 | Location Collected: Electro Cells Date Sample Collected: 12/02/1999 Sample Description: CC001 EAS Project Number: 3211-99 EAS Sample Number: 9913767 Date Sample Received: 12/02/1999 | | Parameter | Data | Quantitation
Limit | Units | Analysis
Date | |---|-----------------------------|------|-----------------------|----------------|------------------| | | Methylene chloride | BQL | 10. | ug/kg | 12/21/99 | | | 2-Butanone (MEK) | 12. | 10. | ug/kg
ug/kg | 12/21/99 | | | Methylacrylonitrile | BQL | 10. | ug/kg
ug/kg | 12/21/99 | | | Methyl methacrylate | BQL | 10. | ug/kg
ug/kg | 12/21/99 | | | Pentachloroethane | BQL |
10. | ug/kg | 12/21/99 | | | Propionitrile | BQL | 200 | ug/kg | 12/21/99 | | | Styrene | BQL | 10. | ug/kg | 12/21/99 | | | trans-1,2-Dichloroethene | BQL | 10. | ug/kg | 12/21/99 | | | trans-1,3-Dichloropropene | BQL | 10. | ug/kg | 12/21/99 | | | trans-1,4-Dichloro-2-butene | BQL | 10. | ug/kg | 12/21/99 | | | Tetrachloroethylene | BQL | 10. | ug/kg | 12/21/99 | | 1 | Toluene | BQL | 10. | ug/kg | 12/21/99 | | | Total Xylenes | BQL | 10. | ug/kg | 12/21/99 | | | Trichloroethylene | BQL | 10. | ug/kg | 12/21/99 | | | Trichlorofluoromethane | BQL | 10. | ug/kg | 12/21/99 | | | Vinyl acetate | BQL | 10. | ug/kg | 12/21/99 | | | Vinyl chloride | BQL | 10. | ug/kg | 12/21/99 | BQL = Below Quantitation Limit * Certification * Connecticut Certified Laboratory Number: PH 0558 New York Certified Laboratory Number: 10916 Massachusetts Certified Laboratory Number: CT 020 The above analyses were conducted in accordance with: - 1. APHA Standard Methods for the Examination of Water and Wastewater, 18th Edition, 1992. - Clean Water Act, List of Approved Test Procedures, 40 CFR. - 3. EPA Test Methods for the Evaluation of Solid Waste, SW-846, 3rd Edition, December, 1987. Location Collected: < 90 Day Date Sample Collected: 12/02/1999 Sample Description: CC003 Sample Description: CC003 EAS Project Number: 3211-99 EAS Sample Number: 9913768 | | • | | | | |------------------------------|-----------------|-----------------------|--------|------------------| | Parameter | Data | Quantitation
Limit | Units | Analysis
Date | | | | | | | | Volatile Organic Comp. Appen | dix IX - Method | SW-846-8260 | | | | 1,1,1,2-Tetrachloroethan | | 10. | ug/kg | 12/21/99 | | 1,1,1-Trichloroethane | BQL | 10. | ug/kg | 12/21/99 | | 1,1,2,2-Tetrachloroethan | | 10. | ug/kg | 12/21/99 | | 1,1,2-Trichloroethane | BQL | 10. | ug/kg | 12/21/99 | | 1,1-Dichloroethane | BQL | 10. | ug/kg | 12/21/99 | | 1,1-Dichloroethene | BQL | 10. | ug/kg | 12/21/99 | | 1,2-Dibromoethane | BQL · | 10. | ug/kg | | | 1,2-Dichloroethane | BQL | 10. | | 12/21/99 | | 1,2-Dichloropropane | BQL | 10. | ug/kg | 12/21/99 | | 1,4-Dioxane | 670. | | ug/kg | 12/21/99 | | Dibromochloromethane | | 100.
10. | ug/kg | 12/21/99 | | Dibromomethane | BQL | | ug/kg | 12/21/99 | | Dichlorodifluoromethane | BQL | 10. | ug/kg | 12/21/99 | | 2-Hexanone | BQL | 10. | ug/kg | 12/21/99 | | 4-Methyl-2-pentanone | BQL | 10. | ug/kg | 12/21/99 | | <u> </u> | 32* | 10. | ug/kg | 12/21/99 | | Acetone
Acetonitrile | 40007 | 10. | ug/kg | 12/21/99 | | | BQL | 100. | ug/kg | 12/21/99 | | Acrolein | BQL | 10. | ug/kg | 12/21/99 | | Acrylonitrile | BQL | 10. | ug/kg | 12/21/99 | | Allyl Chloride | BQL | 10. | ug/kg | 12/21/99 | | Benzene | BQL | 10. | ug/kg | 12/21/99 | | Bromodichloromethane | BQL | 10. | ug/kg | 12/21/99 | | Bromomethane | BQL | 10. | ug/kg | 12/21/99 | | Bromoform | BQL | 10. | ug/kg | 12/21/99 | | cis-1,2-Dichloroethene | BQL | 10. | ug/kg | 12/21/99 | | cis-1,3-Dichloropropene | BQL | 10. | ug/kg | 12/21/99 | | Carbon disulfide | BQL | 10. | ug/kg | 12/21/99 | | Carbon tetrachloride | BQL | 10. | ug/kg | 12/21/99 | | Chloroform | BQL | 10. | ug/kg | 12/21/99 | | Chloroprene | BQL | 200. | ug/kg | 12/21/99 | | Chlorobenzene | BQL | 10. | ug/kg | 12/21/99 | | Chloroethane | BQL | 10. | ug/kg | 12/21/99 | | Chloromethane | BQL | 10. | ug/kg | 12/21/99 | | 1,2-Dibromo-3-chloropropa | | 10. | ug/kg | 12/21/99 | | Ethylbenzene | 2100. | 10. | ug/kg | 12/21/99 | | Ethyl methacrylate | BQL | 1.0. | ug/kg | 12/21/99 | | Iodomethane | BQL | 10. | ug/kg | 12/21/99 | | iso-Butanol | BQL | 200. | ug/kg | 12/21/99 | | | | - | -21,12 | +4/64/00 | Location Collected: < 90 Day Date Sample Collected: 12/02/1999 Sample Description: CC003 EAS Project Number: 3211-99 EAS Sample Number: 9913768 Date Sample Received: 12/02/1999 | | Parameter | Data | Quantitation
Limit | Units | Analysis
Date | |--------|-----------------------------|-------------|-----------------------|-------|------------------| | • | Methylene chloride | 23 } | 10. | ug/kg | 12/21/99 | | | 2-Butanone (MEK) | 100. | 10. | ug/kg | 12/21/99 | | | Methylacrylonitrile | BQL | 10. | ug/kg | 12/21/99 | | | Methyl methacrylate | BQL | 10. | ug/kg | 12/21/99 | | | Pentachloroethane | BQL | 10. | ug/kg | 12/21/99 | | | Propionitrile | BQL | 200. | ug/kg | 12/21/99 | | | Styrene | BQL | 10. | ug/kg | 12/21/99 | | | trans-1,2-Dichloroethene | BQL | 10. | ug/kg | 12/21/99 | | | trans-1,3-Dichloropropene | BQL | 10. | ug/kg | 12/21/99 | | | trans-1,4-Dichloro-2-butene | BQL | 10. | ug/kg | 12/21/99 | | | Tetrachloroethylene | 50. | 10. | ug/kg | 12/21/99 | | السيلة | Toluene | 1707 | 10. | ug/kg | 12/21/99 | | | Total Xylenes | 12. | 0.010 | mg/kg | 12/21/99 | | | Trichloroethylene | 73. | 10. | ug/kg | 12/21/99 | | | Trichlorofluoromethane | BQL | 10. | ug/kg | 12/21/99 | | | Vinyl acetate | BQL | 10. | ug/kg | 12/21/99 | | | Vinyl chloride | BQL | 10. | ug/kg | 12/21/99 | * Comments * Total Xylenes units are mg/kg. Location Collected: < 90 Day Date Sample Collected: 12/02/1999 Sample Description: CC003 EAS Project Number: 3211-99 EAS Sample Number: 9913768 Date Sample Received: 12/02/1999 Parameter Data Quantitation Limit Units Analysis Date BQL = Below Quantitation Limit * Certification * Connecticut Certified Laboratory Number: PH 0558 New York Certified Laboratory Number: 10916 Massachusetts Certified Laboratory Number: CT 020 The above analyses were conducted in accordance with: - 1. APHA Standard Methods for the Examination of Water and Wastewater, 18th Edition, 1992. - 2. Clean Water Act, List of Approved Test Procedures, 40 CFR. - 3. EPA Test Methods for the Evaluation of Solid Waste, SW-846, 3rd Edition, December, 1987. Location Collected: Stripper Room Date Sample Collected: 12/02/1999 Sample Description: CC005 EAS Project Number: 3211-99 EAS Sample Number: 9913769 | | | | | • | |---|---|---|--|--| | Parameter | Data | Quantitation
Limit | Units | Analysis
Date | | Volatile Organic Comp. Append 1,1,1,2-Tetrachloroethane 1,1,1-Trichloroethane 1,1,2-Tetrachloroethane 1,1,2-Trichloroethane 1,1-Dichloroethane 1,1-Dichloroethane | BQL
B QL | -846-8260
10.
10.
10.
10.
10. | ug/kg
ug/kg
ug/kg
ug/kg
ug/kg
ug/kg | 12/21/99
12/21/99
12/21/99
12/21/99
12/21/99
12/21/99 | | 1,2-Dibromoethane 1,2-Dichloroethane 1,2-Dichloropropane 1,4-Dioxane Dibromochloromethane Dibromomethane Dichlorodifluoromethane | BQL
BQL
BQL
BQL
BQL
BQL
BQL | 10.
10.
10.
10.
10.
10. | ug/kg ug/kg ug/kg ug/kg ug/kg ug/kg | 12/21/99
12/21/99
12/21/99
12/21/99
12/21/99
12/21/99
12/21/99 | | 2-Hexanone 4-Methyl-2-pentanone Acetone Acetonitrile Acrolein Acrylonitrile | BQL
BQL
BQL
BQL
BQL | 10.
10.
10.
100.
10. | ug/kg ug/kg ug/kg ug/kg ug/kg ug/kg | 12/21/99
12/21/99
12/21/99
12/21/99
12/21/99
12/21/99 | | Allyl Chloride Benzene Bromodichloromethane Bromomethane Bromoform cis-1,2-Dichloroethene cis-1,3-Dichloropropene Carbon disulfide | BQL
BQL
BQL
BQL
BQL
BQL
BQL | 10.
10.
10.
10.
10.
10.
10. | ug/kg ug/kg ug/kg ug/kg ug/kg ug/kg | 12/21/99
12/21/99
12/21/99
12/21/99
12/21/99
12/21/99 | | Carbon district Carbon tetrachloride Chloroform Chloroprene Chlorobenzene Chloroethane Chloromethane 1,2-Dibromo-3-chloropropan Ethylbenzene | BQL
BQL
BQL
BQL
BQL
BQL | 10.
10.
200.
10.
10.
10. | ug/kg ug/kg ug/kg ug/kg ug/kg ug/kg ug/kg ug/kg | 12/21/99
12/21/99
12/21/99
12/21/99
12/21/99
12/21/99
12/21/99
12/21/99 | | Ethyl methacrylate Iodomethane iso-Butanol | BQL
BQL
BQL | 10.
10.
200. | ug/kg
ug/kg
ug/kg | 12/21/99
12/21/99
12/21/99 | Location Collected: Stripper Room Date Sample Collected: 12/02/1999 Sample Description: CC005 EAS Project Number: 3211-99 EAS Sample Number: 9913769 Date Sample Received: 12/02/1999 | | Parameter | Data | Quantitation
Limit | Units | Analysis
Date | |---------|--|-------------------|-----------------------|-------------------------|----------------------------------| | 2-Buta | ene chloride
none (MEK) | 20.)
BQL | 10. | ug/kg
ug/kg | 12/21/99
12/21/99 | | Methyl | acrylonitrile
methacrylate
hloroethane | EQL
BQL | 10.
10. | ug/kg
ug/kg | 12/21/99 12/21/99 | | | nitrile | BQL
BQL
BQL | 10.
200.
10. | ug/kg
ug/kg
ug/kg | 12/21/99
12/21/99
12/21/99 | | trans- | 1,2-Dichloroethene
1,3-Dichloropropene | BQL
BQL | 10. | ug/kg
ug/kg | 12/21/99
12/21/99 | | | 1,4-Dichloro-2-butene
nloroethylene | BQL
BQL
BQL | 10.
10.
10. | ug/kg
ug/kg
ug/kg | 12/21/99
12/21/99
12/21/99 | | Total : | Kylenes
proethylene | BQL
BQL | 10.
10. | ug/kg
ug/kg | 12/21/99 | | Vinyl | orofluoromethane
acetate
chloride | BQL
BQL | 10.
10.
10. | ug/kg
ug/kg
ug/kg | 12/21/99
12/21/99
12/21/99 | BQL = Below Quantitation Limit * Certification * Connecticut Certified Laboratory Number: PH 0558 New York Certified Laboratory Number: 10916 Massachusetts Certified Laboratory Number: CT 020 The above analyses were conducted in accordance with: - 1. APHA Standard Methods for the Examination of Water and Wastewater, 18th Edition, 1992. - Clean Water Act, List of Approved Test Procedures, 40 CFR. - 3. EPA Test Methods for the Evaluation of Solid Waste, SW-846, 3rd Edition, December, 1987. Location Collected: Electro Cells Date Sample Collected:
12/02/1999 Sample Description: CC 002 EAS Project Number: 3211-99 EAS Sample Number: 9913770 | | | | | • | | |---|------------|-----------------------|----------------|----------------------|--| | Parameter | Data | Quantitation
Limit | Units | Analysis
Date | | | Herbicide Extraction | | | | 12/17/99 | | | Solid Pesticide/PCB Extraction | | | | 12/09/99 | | | Cyanide, Total | BQL | 5.0 | mg/kg | 12/06/99 | | | Sulfide, Total | 22 | 10. | mg/kg | 12/08/99 | | | Metal's Digestion for Solid Samples | s - Method | SW-846-3050 | | 12/06/99 | | | Silver, Total | BQL | 0.60 | mg/kg | 12/06/99 | | | Arsenic, Total | BQL | 0.10 | mg/kg | 12/06/99 | | | Barium, Total | BQL | 10. | mg/kg | 12/06/99 | | | Beryllium, Total | BQL | 0.40 | mg/kg | 12/06/99 | | | Cadmium, Total | 0.43 | 0.20 | mg/kg | 12/06/99 | | | palt, Total | BQL | 2.0 | mg/kg | 12/06/99 | | | Chromium, Total | 1.8 | 0.80 | mg/kg | 12/06/99 | | | Copper, Total | 18.3 | 0.40 | mg/kg | 12/06/99 | | | Mercury, Total | BQL | 10. | mg/kg | 12/08/99 | | | Nickel, Total | BQL | 0.60 | mg/kg | 12/08/99 | | | Lead, Total | 16. | 1.2 | mg/kg | 12/06/99 | | | Antimony, Total | BQL | 8.0 | mg/kg | 12/06/99 | | | Selenium, Total | BQL | 0.50 | mg/kg | 12/06/99 | | | Tin, Total | (19) | 16. | mg/kg | 12/06/99 | | | Thallium, Total
Vanadium, Total | BOL | 8.0 | mg/kg | 12/06/99 | | | Zinc, Total | BQL
BQL | 20.
20. | | 12/06/99 | | | | | | mg/kg | 12/06/99 | | | Base/Neutral and Acidic Extractable Appendix IX-Mthd 8270 (GC/MS) Solid | | | | 12/17/99 | | | 1,2,4,5-Tetrachlorobenzene | BQL | 330. | /1-a | 72/22/00 | | | 1,2,4,5-lettachiolobenzene | BQL | 330. | ug/kg | 12/23/99 | | | 1,4-Naphthoquinone | BQL | 330. | ug/kg | 12/23/99 | | | 1-Naphthylamine | BQL | 330. | ug/kg | 12/23/99
12/23/99 | | | 2-Acetylaminofluorene (2-AAF) | BQL | 330. | ug/kg | | | | 2,3,4,6-Tetrachlorophenol | BQL | 330. | ug/kg
ug/kg | 12/23/99
12/23/99 | | | 2,4,5-Trichlorophenol | BQL | 330. | ug/kg
ug/kg | 12/23/99 | | | 2,4,6-Trichlorophenol | BQL | 330. | ug/kg | 12/23/99 | | | 2,4-Dichlorophenol | BQL | 330. | ug/kg | 12/23/99 | | | 2,4-Dimethylphenol | BQL | 330. | ug/kg | 12/23/99 | | | 2,4-Dinitrophenol | BQL | 1600. | ug/kg | 12/23/99 | | | 2,4-Dinitrotoluene | BQL | 330. | ug/kg | 12/23/99 | | | 2,6-Dichlorophenol | BQL | 330. | ug/kg | 12/23/99 | | | 2,6-Dinitrotoluene | BQL | 330. | ug/kg | 12/23/99 | | | | _ | • | -3/ 1/3 | 12,23,77 | | Location Collected: Electro Cells Date Sample Collected: 12/02/1999 Sample Description: CC 002 EAS Project Number: 3211-99 EAS Sample Number: 9913770 | | Parameter | Data | Quantitation
Limit | Units | Analysis
Date | |--------|---|------------|-----------------------|----------------|------------------| | ٠ | 2-Chloronaphthalene | BQL | 330. | ug/kg | 12/23/99 | | | 2-Chlorophenol | BQL | 330. | ug/kg | 12/23/99 | | | 2-Methylnaphthalene | BQL | 330. | ug/kg
ug/kg | 12/23/99 | | | p-(Dimethylamino)azobenzene | BQL | 330. | ug/kg | 12/23/99 | | | 2-Naphthylamine | BQL | 330. | ug/kg | 12/23/99 | | | 2-Picoline | BQL | 330. | ug/kg | 12/23/99 | | | 3,3'-Dichlorobenzidine | BQL | 330. | ug/kg
ug/kg | 12/23/99 | | | 3,3'-Dimethylbenzidine | BQL | 330. | | | | | 3-Methylcholanthrene | BQL | 330. | ug/kg | 12/23/99 | | | 4,6-Dinitro-o-cresol | BQL | 1600. | ug/kg | 12/23/99 | | • | 4-Aminobiphenyl | BQL | 330. | ug/kg | 12/23/99 | | | 4-Bromophenyl phenyl ether | BQL
BQL | 330. | ug/kg | 12/23/99 | | | 4-Chlorophenyl phenyl ether | BQL | | ug/kg | 12/23/99 | | | 4-Nitroquinoline 1-oxide | | 330. | ug/kg | 12/23/99 | | | S-Nitro-o-toluidine | BQL | 330. | ug/kg | 12/23/99 | | | Hexachlorophene | BQL | 330. | ug/kg | 12/23/99 | | | - | BQL | 330. | ug/kg | 12/23/99 | | | Hexachloropropene 7,12-Dimethylbenz[a]antracene | BQL | 330. | ug/kg | 12/23/99 | | | | | 330. | ug/kg | 12/23/99 | | | alpha, alpha-Dimethylphenethy | ~ | 330. | ug/kg | 12/23/99 | | | Acenaphthene | BQL | .330. | ug/kg | 12/23/99 | | | Acenaphthylene | BQL | 330. | ug/kg | 12/23/99 | | | Acetophenone
Aniline | BQL | 330. | ug/kg | 12/23/99 | | | Anthracene | BQL | 330. | ug/kg | 12/23/99 | | | Aramite | BQL | 330. | ug/kg | 12/23/99 | | | • | BQL | 330. | ug/kg | 12/23/99 | | | Bis (2-ethylhexyl) phthalate | 1400r. | 330. | ug/kg | 12/23/99 | | | Bis (2-chloroethyl) ether | BQL | 330. | ug/kg | 12/23/99 | | | Bis (2-chloroethoxy) methane
Bis(2-chloro-1-methylethyl) e | BQL | 330. | ug/kg | 12/23/99 | | | | BQL | 330. | ug/kg | 12/23/99 | | | Benzyl alcohol | BQL | 330. | ug/kg | 12/23/99 | | | Butyl benzylphthalate | 1600. | 330. | na\ka | 12/23/99 | | | Chlambanilata | BQL | 330. | ug/kg | 12/23/99 | | | Chlorobenzilate | BQL | 330. | ug/kg | 12/23/99 | | | Diallate | BQL | 330. | ug/kg | 12/23/99 | | | Dibenzo[a,h]anthracene | BQL | 330. | ug/kg | 12/23/99 | | | Dibenzofuran | BQL | 330. | ug/kg | 12/23/99 | | السيسا | Diethylphthalate | BQL | 330. | ug/kg | 12/23/99 | | | Dimethoate | BQL | 330. | ug/kg | 12/23/99 | | | Dimethyl phthalate | BQL | 330. | ug/kg | 12/23/99 | | | Di-n-octylphthalate | 640. | 330. | ug/kg | 12/23/99 | Location Collected: Electro Cells Date Sample Collected: 12/02/1999 Sample Description: CC 002 EAS Project Number: 3211-99 EAS Sample Number: 9913770 | | Parameter | Data | Quantitation
Limit | Units | Analysis
Date | |----------|-------------------------------|-------------------|-----------------------|----------------|------------------| | | | united Philippins | | | | | | Di-n-butylphthalate | 370 | 330. | ug/kg | 12/23/99 | | , | Diphenylamine | BQL | 330. | ug/kg | 12/23/99 | | | Disulfoton | BQL | 330. | ug/kg | 12/23/99 | | | Ethyl methanesulfonate | \mathtt{BQL} | 330. | ug/kg | 12/23/99 | | | Famphur | BQL | 330. | ug/kg | 12/23/99 | | | Fluoranthene | BQL | 330. | ug/kg | 12/23/99 | | | Fluorene | BQL | 330. | ug/kg | 12/23/99 | | | Hexachlorophene | BQL | 1600. | ug/kg | 12/23/99 | | | Hexachlorobenzene | BQL | 330. | ug/kg | 12/23/99 | | | Hexachlorobutadiene | BQL | 330. | ug/kg | 12/23/99 | | | Hexachlorocyclopentadiene | BQL | 330. | ug/kg | 12/23/99 | | | Hexachloroethane | BQL | 330. | ug/kg | 12/23/99 | | | Indeno (1,2,3-cd) pyrene | BQL | 330. | ug/kg | 12/23/99 | | | Isodrin | BQL | 330. | ug/kg | 12/23/99 | | | Isophorone | BQL | 330. | ug/kg | 12/23/99 | | | Isosafrole | BQL | 330. | ug/kg | 12/23/99 | | | Kepone | BQL | 330. | ug/kg
ug/kg | • • | | | m-Cresol | BQL | 330. | | 12/23/99 | | | m-Dinitrobenzene | BQL | 330. | ug/kg | 12/23/99 | | | Methyl methanesulfonate | BQL | 330. | ug/kg | 12/23/99 | | | Methapyrilene | BQL | 330. | ug/kg | 12/23/99 | | | Methyl parathion | BQL | 330. | ug/kg | 12/23/99 | | | m-Nitroaniline | BQL | 1600. | ug/kg | 12/23/99 | | | Naphthalene | BQL | 330. | ug/kg | 12/23/99 | | | N-Nitrosodi-n-butylamine | BQL
BQL | 330. | ug/kg | 12/23/99 | | | Nitrobenzene | | 330. | ug/kg | 12/23/99 | | | N-Nitrosodimethylamine | BQL | | ug/kg | 12/23/99 | | | | BQL | 330. | ug/kg | 12/23/99 | | • | N-Nitrosodi-n-propylamine | BQL | 330. | ug/kg | 12/23/99 | | | N-Nitrosodiphenylamine | BQL | 330. | ug/kg | 12/23/99 | | | N-Nitrosomethylethylamine | BQL | 330. | ug/kg | 12/23/99 | | | N-Nitrosodiethylamine | BQL | 330. | ùg/kg | 12/23/99 | | | N-Nitrosomorpholine | BQL | 330. | ug/kg | 12/23/99 | | | N-Nitrosopiperidine | BQL | 330. | ug/kg | 12/23/99 | | | N-Nitrosopyrrolidine | BQL | 330. | ug/kg | 12/23/99 | | | o-Cresol | BQL | 330. | ug/kg | 12/23/99 | | | o-Nitroaniline | BQL | 1600. | ug/kg | 12/23/99 | | * | o-Nitrophenol | BQL | 330. | ug/kg | 12/23/99 | | | 000-Triethyl phosphorothicate | BQL | 330. | ug/kg | 12/23/99 | | | o-Toluidine | BQL | 330. | ug/kg | 12/23/99 | | | Parathion | BQL | 330. | ug/kg | 12/23/99 | Location Collected: Electro Cells Date Sample Collected: 12/02/1999 Sample Description: CC 002 EAS Project Number: 3211-99 EAS Sample Number: 9913770 | | • | | • | | | |------------------------------|---------------------|-----------------------|----------------|----------------------|--| | Parameter | Data | Quantitation
Limit | Units | Analysis
Date | | | p-Chloroaniline | BQL | 330. | | 12/22/00 | | | p-Chloro-m-cresol | BQL | 330. | ug/kg
ug/kg | 12/23/99
12/23/99 | | | p-Cresol | BQL | 330. | ug/kg
ug/kg | 12/23/99 | | | Pentachlorobenzene | BQL | 330. | ug/kg | 12/23/99 | | | Pentachloronitrobenzene | BQL | 1600. | ug/kg | 12/23/99 | | | Pentachlorophenol | BQL | 1600. | ug/kg | 12/23/99 | | | Phenacetin | BQL | 330. | ug/kg | 12/23/99 | | | Phenanthrene | BQL | 330. | ug/kg | 12/23/99 | | | Phenol | BQL | 330. | ug/kg
ug/kg | 12/23/99 | | | Phorate | BQL | 330. | ug/kg
ug/kg | 12/23/99 | | | p-Nitroaniline | BQL | 1600. | | | | | p-Nitrophenol | BQL | 1600. | ug/kg
ug/kg | 12/23/99 | | | p-Phenylenediamine | BQL | 330. | | 12/23/99 | | | Pronamide | BQL | 330. | ug/kg | 12/23/99 | | | Pyrene | BQL | 330. | ug/kg | 12/23/99 | | | Pyridine | | | ug/kg | 12/23/99 | | | Safrole | BQL
BQL | 330.
330. | ug/kg | 12/23/99 | | | Sulfotepp | | 330. | ug/kg | 12/23/99 | | | sym-Trinitrobenzene | BQL | 330. | ug/kg | 12/23/99 | | | Thionazin | BQL
BQL | 330.
330. | ug/kg | 12/23/99 | | | Benzo (a) anthracene | BQL | 330. | ug/kg | 12/23/99 | | | Benzo (a) pyrene | BQL | 330. | ug/kg | 12/23/99
12/23/99 | | | Benzo (b) fluoranthene | BQL | 330. | ug/kg | | | | Benzo (ghi) perylene | BQL | 330. | ug/kg | 12/23/99 | | | Benzo (k) fluoranthene | BQL | 330. | ug/kg | 12/23/99 | | | | | 330. | ug/kg | 12/23/99 | | | Appendix IX Herbicides - Met | | | •- | | | | 2,4,5-T | BQL | 10. | ug/kg | 12/21/99 | | | 2,4,5-TP (Silvex) | BQL | 10. | ug/kg | 12/21/99 | | | 2,4-D | BQL | 100. | ug/kg | 12/21/99 | | | Dinoseb | BQL (| 10, | ug/kg | 12/21/99 | | | Appendix IX Pesticide and PC | B's - Method SW-846 | 5-8080 | | | | | 4,4'-DDD | BQL | 200. | ug/kg | 12/23/99
 | | 4,4'-DDE | BQL | 200. | ug/kg | 12/23/99 | | | 4,4'-DDT | BQL | 200. | ug/kg | 12/23/99 | | | Aldrin Aldrin | BQL | 200. | ug/kg | 12/23/99 | | | Chlordane | BQL | 200. | ug/kg | 12/23/99 | | | Dieldrin | BQL | 200. | ug/kg | 12/23/99 | | | Endosulfan sulfate | BQL | 200. | ug/kg | 12/23/99 | | Location Collected: Electro Cells Date Sample Collected: 12/02/1999 Sample Description: CC 002 EAS Project Number: 3211-99 EAS Sample Number: 9913770 | | Parameter | Data | Quantitation
Limit | Units | Analysis
Date | |--------|--------------------|----------------|-----------------------|-------|------------------| | | m_ a 1 a.ha. | | 200 | | | | | Endrin aldehyde | BQL | 200 | ug/kg | 12/23/99 | | | Endrin | BQL | 200. | ug/kg | 12/23/99 | | | Heptachlor | BQL | 200. | ug/kg | 12/23/99 | | | Heptachlor epoxide | BQL | 200. | ug/kg | 12/23/99 | | | Methoxychlor | BQL | 200. | ug/kg | 12/23/99 | | | Aroclor 1016 | BQL | 200. | ug/kg | 12/23/99 | | | Aroclor 1221 | BQL | 200. | ug/kg | 12/23/99 | | | Aroclor 1232 | BQL | 200. | ug/kg | 12/23/99 | | | Aroclor 1242 | BQL | 200. | ug/kg | 12/23/99 | | | Aroclor 1248 | BQL | 200. | ug/kg | 12/23/99 | | | Aroclor 1254 | BQL | 200. | ug/kg | 12/23/99 | | -41 10 | Aroclor 1260 | BQL | 200. | ug/kg | 12/23/99 | | | Toxaphene | \mathtt{BQL} | 200. | ug/kg | 12/23/99 | | | a-BHC | BQL | 200. | ug/kg | 12/23/99 | | | Endosulfan I | \mathtt{BQL} | 200. | ug/kg | 12/23/99 | | | b-BHC | BQL | 200. | ug/kg | 12/23/99 | | | Endosulfan II | BQL | 200. | ug/kg | 12/23/99 | | | d-BHC | BQL | 200. | ug/kg | 12/23/99 | | | g-BHC (Lindane) | BOL | 200. | ug/kg | 12/23/99 | Location Collected: Electro Cells Date Sample Collected: 12/02/1999 Sample Description: CC 002 EAS Project Number: 3211-99 EAS Sample Number: 9913770 Date Sample. Received: 12/02/1999 Quantitation Analysis Parameter Data Limit Units Date BOL = Below Quantitation Limit * Certification * Connecticut Certified Laboratory Number: PH 0558 New York Certified Laboratory Number: 10916 Massachusetts Certified Laboratory Number: CT 020 The above analyses were conducted in accordance with: - 1. APHA Standard Methods for the Examination of Water and Wastewater, 18th Edition, 1992. - Clean Water Act, List of Approved Test Procedures, 40 CFR. - 3. EPA Test Methods for the Evaluation of Solid Waste, SW-846, 3rd Edition, December, 1987. Location Collected: < 90 Day Date Sample Collected: 12/02/1999 Sample Description: CC 004 EAS Project Number: 3211-99 EAS Sample Number: 9913771 | Parameter | Data | Quantitation
Limit | Units | Analysis
Date | | |--|--|---|---|--|--| | Herbicide Extraction Solid Pesticide/PCB Extraction Cyanide, Total Sulfide, Total | BQL
8.1) | 5.0
5.0 | mg/kg
mg/kg | 12/17/99
12/09/99
12/06/99
12/15/99 | | | Metal's Digestion for Solid Samples Silver, Total Arsenic, Total Barium, Total Beryllium, Total Cadmium, Total Dalt, | - Method BQL BQL BQL BQL BQL CONTROL C | SW-846-3050
0.60
0.10
10.
0.40
0.20
2.0
0.80
0.40
10.
0.60
1.2
8.0
0.50
16.
8.0
20. | mg/kg | 12/06/99
12/06/99
12/06/99
12/06/99
12/06/99
12/06/99
12/06/99
12/06/99
12/06/99
12/06/99
12/06/99
12/06/99
12/06/99
12/06/99
12/06/99
12/06/99
12/06/99 | | | Base/Neutral and Acidic Extractable Appendix IX-Mthd 8270 (GC/MS) Solid 1,2,4,5-Tetrachlorobenzene 1,2,4-Trichlorobenzene 1,4-Naphthoquinone 1-Naphthylamine 2-Acetylaminofluorene (2-AAF) 2,3,4,6-Tetrachlorophenol 2,4,5-Trichlorophenol 2,4,6-Trichlorophenol 2,4-Dichlorophenol 2,4-Dimethylphenol 2,4-Dinitrotoluene 2,6-Dichlorophenol 2,6-Dinitrotoluene | | 330. 330. 330. 330. 330. 330. 330. 330. | ug/kg | 12/17/99 12/23/99 12/23/99 12/23/99 12/23/99 12/23/99 12/23/99 12/23/99 12/23/99 12/23/99 12/23/99 12/23/99 12/23/99 12/23/99 12/23/99 12/23/99 12/23/99 | | Location Collected: < 90 Day Date Sample Collected: 12/02/1999 Sample Description: CC 004 EAS Project Number: 3211-99 EAS Sample Number: 9913771 | | Parameter | Data | Quantitation
Limit | Units | Analysis
Date | | |-----|-------------------------------|--------|-----------------------|--------|------------------|--| |) | | | | | | | | | 2-Chloronaphthalene | BQL | 330. | ··- /) | 30/03/00 | | | | 2-Chlorophenol | BQL | 330. | ug/kg | 12/23/99 | | | | 2-Methylnaphthalene | | | ug/kg | 12/23/99 | | | | | BQL | 330. | ug/kg | 12/23/99 | | | | p-(Dimethylamino)azobenzene | BQL | 330. | ug/kg | 12/23/99 | | | | 2-Naphthylamine | BQL | 330. | ug/kg | 12/23/99 | | | | 2-Picoline | BQL | 330. | ug/kg | 12/23/99 | | | | 3,3'-Dichlorobenzidine | BQL | 330. | ug/kg | 12/23/99 | | | | 3,3'-Dimethylbenzidine | BQL | 330. | ug/kg | 12/23/99 | | | | 3-Methylcholanthrene | BQL | 330. | ug/kg | 12/23/99 | | | | 4,6-Dinitro-o-cresol | BQL | 1600. | ug/kg | 12/23/99 | | | | 4-Aminobiphenyl | BQL | 330. | ug/kg | 12/23/99 | | | Wh | , 4-Bromophenyl phenyl ether | BQL | 330. | ug/kg | 12/23/99 | | | | 4-Chlorophenyl phenyl ether | BQL | 330. | ug/kg | 12/23/99 | | | | 4-Nitroquinoline 1-oxide | BQL | 330. | ug/kg | 12/23/99 | | | | 5-Nitro-o-toluidine | BQL | 330. | ug/kg | 12/23/99 | | | | Hexachlorophene | BQL | 330. | ug/kg | 12/23/99 | | | | Hexachloropropene | BQL | 330. | ug/kg | 12/23/99 | | | | 7,12-Dimethylbenz[a]antracene | BQL | 330. | ug/kg | 12/23/99 | | | | alpha, alpha-Dimethylphenethy | BQL | 330. | ug/kg | 12/23/99 | | | | Acenaphthene | BQL | 330. | ug/kg | 12/23/99 | | | | Acenaphthylene | BQL | 330. | ug/kg | 12/23/99 | | | | Acetophenone | BQL | 330. | ug/kg | 12/23/99 | | | | Aniline | BQL | 330. | ug/kg | 12/23/99 | | | | Anthracene | BQL | 330. | ug/kg | 12/23/99 | | | | Aramite | BQL | 330. | ug/kg | 12/23/99 | | | | Bis (2-ethylhexyl) phthalate | 14.8.4 | J 330. | | | | | | Bis (2-chloroethyl) ether | BQL | 330. | ug/kg | 12/23/99 | | | | Bis (2-chloroethoxy) methane | BQL | 330. | ug/kg | 12/23/99 | | | | Bis(2-chloro-1-methylethyl) e | | | ug/kg | 12/23/99 | | | | Benzyl alcohol | BQL | 330. | ug/kg | 12/23/99 | | | | | BQL | 330. | ug/kg | 12/23/99 | | | | Butyl benzylphthalate | BQL | 330. | ug/kg | 12/23/99 | | | | Chrysene | BQL | 330. | ug/kg | 12/23/99 | | | | Chlorobenzilate | BQL | 330. | ug/kg | 12/23/99 | | | | Diallate | BOL | 330. | ug/kg | 12/23/99 | | | | Dibenzo [a, h] anthracene | BQL | 330. | ug/kg | 12/23/99 | | | | Dibenzofuran | BQL | 330. | ug/kg | 12/23/99 | | | • 4 | Diethylphthalate | BQL | 330. | ug/kg. | 12/23/99 | | | | Dimethoate | BQL | 330. | ug/kg | 12/23/99 | | | | Dimethyl phthalate | BQL | 330. | ug/kg | 12/23/99 | | | | Di-n-octylphthalate | BQL | 330. | ug/kg | 12/23/99 | | | | | | | | | | Location Collected: < 90 Day Date Sample Collected: 12/02/1999 Sample Description: CC 004 EAS Project Number: 3211-99 EAS Sample Number: 9913771 | | Parameter | Data | Quantitation
Limit | Units | Analysis
Date | |-----|----------------------------|------|-----------------------|-------|------------------| | Di- | -n-butylphthalate | 40.1 | J 330. | ug/kg | 12/23/99 | | Dip | phenylamine | BQL | 330. | ug/kg |
12/23/99 | | Dis | sulfoton | BQL | 330. | ug/kg | 12/23/99 | | Etl | nyl methanesulfonate | BQL | 330. | ug/kg | 12/23/99 | | Far | nphur | BQL | 330. | ug/kg | 12/23/99 | | Flu | ioranthene | BQL | 330. | ug/kg | 12/23/99 | | Flu | iorene | BQL | 330. | ug/kg | 12/23/99 | | Hex | cachlorophene | BQL | 1600. | ug/kg | 12/23/99 | | | kachlorobenzene | BQL | 330. | ug/kg | 12/23/99 | | Нез | kachlorobutadiene | BQL | 330. | ug/kg | 12/23/99 | | Hex | achlorocyclopentadiene | BQL | 330. | ug/kg | 12/23/99 | | | cachloroethane. | BQL | 330. | ug/kg | 12/23/99 | | Inc | deno (1,2,3-cd) pyrene | BQL | 330. | ug/kg | 12/23/99 | | | odrin | BQL | 330. | ug/kg | 12/23/99 | | Isc | phorone | BQL | 330. | ug/kg | 12/23/99 | | | safrole | BQL | 330. | ug/kg | 12/23/99 | | Ker | oone | BQL | 330. | ug/kg | 12/23/99 | | _ | Cresol | BQL | 330. | ug/kg | 12/23/99 | | | Dinitrobenzene | BQL | 330. | ug/kg | 12/23/99 | | | hyl methanesulfonate | BQL | 330. | ug/kg | 12/23/99 | | | :hapyrilene | BQL | 330. | ug/kg | 12/23/99 | | | hyl parathion | BQL | 330. | ug/kg | 12/23/99 | | m-N | litroaniline | BQL | 1600. | ug/kg | 12/23/99 | | Nap | hthalene | BQL | 330. | ug/kg | 12/23/99 | | N-N | Mitrosodi-n-butylamine | BQL | 330. | ug/kg | 12/23/99 | | Nit | robenzene | BQL | 330. | ug/kg | 12/23/99 | | N-N | litrosodimethylamine | BQL | 330. | ug/kg | 12/23/99 | | N-N | itrosodi-n-propylamine | BQL | 330. | ug/kg | 12/23/99 | | N-N | itrosodiphenylamine | BQL | 330. | ug/kg | 12/23/99 | | N-N | itrosomethylethylamine | BQL | 330. | ug/kg | 12/23/99 | | | itrosodiethylamine | BQL | 330. | ug/kg | 12/23/99 | | | itrosomorpholine | BQL | 330. | ug/kg | 12/23/99 | | | itrosopiperidine | BQL | 330. | ug/kg | 12/23/99 | | N-N | itrosopyrrolidine | BQL | 330. | ug/kg | 12/23/99 | | | resol | BQL | 330. | ug/kg | 12/23/99 | | | itroaniline | BQL | 1600. | ug/kg | 12/23/99 | | | itrophenol | BQL | 330. | ug/kg | 12/23/99 | | | -Triethyl phosphorothicate | BQL | 330. | ug/kg | 12/23/99 | | | oluidine | BQL | 330. | ug/kg | 12/23/99 | | Par | athion | BQL | 330. | ug/kg | 12/23/99 | Location Collected: < 90 Day Date Sample Collected: 12/02/1999 Sample Description: CC 004 EAS Project Number: 3211-99 EAS Sample Number: 9913771 | Parameter | Data | Quantitation
Limit | Units | Analysis
Date | | |---|--|---|---|--|--| | p-Chloroaniline p-Chloro-m-cresol p-Cresol Pentachlorobenzene Pentachloronitrobenzene Pentachlorophenol Phenacetin Phenathrene Phenol Phorate p-Nitroaniline p-Nitrophenol p-Phenylenediamine Pronamide Pyrene Pyridine Safrole Sulfotepp sym-Trinitrobenzene Thionazin Benzo (a) anthracene Benzo (b) fluoranthene | BQL
BQL
BQL
BQL
BQL
BQL
BQL
BQL
BQL
BQL | 330. 330. 330. 1600. 1600. 330. 330. 330. 330. 330. 330. 330. | ug/kg | 12/23/99
12/23/99
12/23/99
12/23/99
12/23/99
12/23/99
12/23/99
12/23/99
12/23/99
12/23/99
12/23/99
12/23/99
12/23/99
12/23/99
12/23/99
12/23/99
12/23/99
12/23/99
12/23/99
12/23/99
12/23/99
12/23/99
12/23/99
12/23/99 | | | Benzo (ghi) perylene
Benzo (k) fluoranthene | BQL
BQL | 330.
330. | ug/kg
ug/kg
ug/kg | 12/23/99
12/23/99
12/23/99 | | | Appendix IX Herbicides - Method S 2,4,5-T 2,4,5-TP (Silvex) 2,4-D Dinoseb | W-846-8150
BQL
BQL
BQL
BQL | 10.
10.
100.
10. | ug/kg
ug/kg
ug/kg
ug/kg | 12/21/99
12/21/99
12/21/99
12/21/99 | | | Appendix IX Pesticide and PCB's - 4,4'-DDD 4,4'-DDE 4,4'-DDT Aldrin Chlordane Dieldrin Endosulfan sulfate | Method SW-84 BQL BQL BQL BQL BQL BQL BQL BQL BQL | 200.
200.
200.
200.
200.
200.
200.
200. | ug/kg ug/kg ug/kg ug/kg ug/kg ug/kg ug/kg | 12/23/99
12/23/99
12/23/99
12/23/99
12/23/99
12/23/99
12/23/99 | | Location Collected: < 90 Day Date Sample Collected: 12/02/1999 Sample Description: CC 004 EAS Project Number: 3211-99 EAS Sample Number: 9913771 | | Parameter | Data | Quantitation
Limit | Units | Analysis
Date | | |----------|--------------------|-------|-----------------------|----------------|------------------|--| | | | | | | 11 | | | | Endrin aldehyde | BQL | 200. | ug/kg | 12/23/99 | | | | Endrin | BQL | 200. | ug/kg | 12/23/99 | | | | Heptachlor | BQL | 200. | ug/kg | 12/23/99 | | | | Heptachlor epoxide | BQL | 200. | ug/kg | 12/23/99 | | | | Methoxychlor | BQL | 200. | ug/kg | 12/23/99 | | | | Aroclor 1016 | BQL | 200. | ug/kg | 12/23/99 | | | | Aroclor 1221 | BQL | 200. | ug/kg | 12/23/99 | | | | Aroclor 1232 | BQL | 200. | ug/kg | 12/23/99 | | | | Aroclor 1242 | BQL | 200. | ug/kg | 12/23/99 | | | | Aroclor 1248 | BQL | 200. | ug/kg | 12/23/99 | | | | Aroclor 1254 | BQL | 200. | ug/kg | 12/23/99 | | | . | Aroclor 1260 | BQL | | ug/kg | 12/23/99 | | | | Toxaphene | BQL | 200. | ug/kg | 12/23/99 | | | | a-BHC | . BQL | 200. | ug/kg | 12/23/99 | | | | Endosulfan I | BQL | 200. | ug/kg | 12/23/99 | | | • | b-BHC | BQL | 200. | ug/kg | 12/23/99 | | | | Endosulfan II | BQL | 200. | ug/kg | 12/23/99 | | | | d-BHC | BQL | 200. | ug/kg | 12/23/99 | | | | g-BHC (Lindane) | BQL | 200. | ug/kg
ug/ka | 12/23/99 | | Location Collected: < 90 Day Date Sample Collected: 12/02/1999 Sample Description: CC 004 EAS Project Number: 3211-99 EAS Sample Number: 9913771 Date Sample Received: 12/02/1999 Quantitation Analysis Parameter Data Limit Units Date BQL = Below Quantitation Limit * Certification * Connecticut Certified Laboratory Number: PH 0558 New York Certified Laboratory Number: 10916 Massachusetts Certified Laboratory Number: CT 020 The above analyses were conducted in accordance with: - 1. APHA Standard Methods for the Examination of Water and Wastewater, 18th Edition, 1992. - Clean Water Act, List of Approved Test Procedures, 40 CFR. - 3. EPA Test Methods for the Evaluation of Solid Waste, SW-846, 3rd Edition, December, 1987. Location Collected: Stripper Room Date Sample Collected: 12/02/1999 Sample Description: CC 006 EAS Project Number: 3211-99 EAS Sample Number: 9913772 | | • | | , | | |---|--------------|-----------------------|----------------|----------------------| | Parameter | Data | Quantitation
Limit | Units | Analysis
Date | | | | | | | | Herbicide Extraction | , | | • | 12/17/99 | | Solid Pesticide/PCB Extraction | : | 5 0 | (1 | 12/09/99 | | Cyanide, Total Sulfide, Total | 55. | 5.0 | mg/kg | 12/06/99 | | Suilide, local | 38.4 | . 10. | mg/kg | 12/15/99 | | Metal's Digestion for Solid Samples | - Method | SW-846-3050 | | 12/06/99 | | Silver, Total | BQL | 0.60 | mg/kg | 12/06/99 | | Arsenic, Total | :0::11 | 0.10 | mg/kg | 12/06/99 | | Barium, Total | BQL . | 10. | mg/kg | 12/06/99 | | Beryllium, Total | BQL | 0.40 | mg/kg | 12/06/99 | | Cadmium, Total | BQL | 0.20 | mg/kg | 12/06/99 | | balt, Total | BQL | 2.0 | mg/kg | 12/06/99 | | Chromium, Total | 2.1, | 0.80 | mg/kg | 12/06/99 | | Copper, Total | 6.0 | 0.40 | mg/kg | 12/06/99 | | Mercury, Total | BQL | 10. | mg/kg | 12/08/99 | | Nickel, Total | 2.0 | 0.60 | mg/kg | 12/06/99 | | Lead, Total | 2 :3, | 1.2 | mg/kg | 12/06/99 | | Antimony, Total | BQL' | 8.0 | mg/kg | 12/06/99 | | Selenium, Total | BQL | 0.50 | mg/kg | 12/06/99 | | Tin, Total | BQL | 16. | mg/kg | 12/06/99 | | Thallium, Total | BQL | 8.0 | mg/kg | 12/06/99 | | Vanadium, Total | BQL | 20. | mg/kg | 12/06/99 | | Zinc, Total | 226 | 20. | mg/kg | 12/06/99 | | Base/Neutral and Acidic Extractable Appendix IX-Mthd 8270 (GC/MS) Solid | | | | 12/17/99 | | 1,2,4,5-Tetrachlorobenzene | BQL | 330. | ug/kg | 12/23/99 | | 1,2,4-Trichlorobenzene | BQL | 330. | ug/kg
ug/kg | 12/23/99 | | 1,4-Naphthoquinone | BQL | 330. | ug/kg | 12/23/99 | | 1-Naphthylamine | BQL | 330. | ug/kg
ug/kg | 12/23/99 | | 2-Acetylaminofluorene (2-AAF) | BQL | 330. | | | | 2,3,4,6-Tetrachlorophenol | BQL | 330. | ug/kg | 12/23/99 | | 2,4,5-Trichlorophenol | BQL | 330. | ug/kg
ug/kg | 12/23/99 | | 2,4,6-Trichlorophenol | BQL | 330. | | 12/23/99 | | 2,4-Dichlorophenol | BQL | 330. | ug/kg | 12/23/99
12/23/99 | | 2,4-Dimethylphenol | BQL | 330. | ug/kg | * | | 2,4-Dinitrophenol | BQL | 1600. | ug/kg
ug/kg | 12/23/99
12/23/99 | | 2,4-Dinitrotoluene | BQL | 330. | | 12/23/99 | | 2,6-Dichlorophenol | BQL | , 330. | ug/kg | 12/23/99 | | 2,6-Dinitrotoluene | BQL | 330. | ug/kg | 12/23/99 | | _, • | - 5 | | ug/kg | 14/43/33 | Location Collected: Stripper Room Date Sample Collected: 12/02/1999 Sample Description: CC 006 EAS Project Number: 3211-99 EAS Sample Number: 9913772 | | Parameter | Data | | Quantitation
Limit | Units | Analysis
Date | |------------|-------------------------------|------------------|---|-----------------------|-------|------------------| | | 2-Chloronaphthalene | BQL | * | 330. | ug/kg | 12/23/99 | | | 2-Chlorophenol | BQL | | 330. | ug/kg | 12/23/99 | | | 2-Methylnaphthalene | BQL | | 330. | ug/kg | 12/23/99 | | | p-(Dimethylamino) azobenzene | BQL | | 330. | ug/kg | 12/23/99 | | | 2-Naphthylamine | BQL | | 330. | ug/kg | 12/23/99 | | | ·2-Picoline | BQL | | 330. | ug/kg | 12/23/99 | | | 3,3'-Dichlorobenzidine | BQL | | 330. | ug/kg | 12/23/99 |
| | 3,3'-Dimethylbenzidine | BQL | | 330. | ug/kg | 12/23/99 | | | 3-Methylcholanthrene | BQL | | 330. | ug/kg | 12/23/99 | | | 4,6-Dinitro-o-cresol | BQL | | 1600. | ug/kg | 12/23/99 | | | 4-Aminobiphenyl | BQL | | 330. | ug/kg | 12/23/99 | | sali). sal | 4-Bromophenyl phenyl ether | BQL | | 330. | ug/kg | 12/23/99 | | | 4-Chlorophenyl phenyl ether | BQL | | 330. | ug/kg | 12/23/99 | | | 4-Nitroquinoline 1-oxide | BQL | | 330. | ug/kg | 12/23/99 | | | 5-Nitro-o-toluidine | BQL | | 330. | ug/kg | 12/23/99 | | | Hexachlorophene | BQL | | 330. | ug/kg | 12/23/99 | | | Hexachloropropene | BQL | | 330. | ug/kg | 12/23/99 | | | 7,12-Dimethylbenz[a]antracene | BQL | | 330. | ug/kg | 12/23/99 | | | alpha, alpha-Dimethylphenethy | BQL | | 330. | ug/kg | 12/23/99 | | | Acenaphthene | BQL | | 330. | ug/kg | 12/23/99 | | | Acenaphthylene | BQL | | 330. | ug/kg | 12/23/99 | | | Acetophenone | BQL | | 330. | ug/kg | 12/23/99 | | | Aniline | BQL | | 330. | ug/kg | 12/23/99 | | | Anthracene | BQL | | 330. | ug/kg | 12/23/99 | | | Aramite | BQL | | 330. | ug/kg | 12/23/99 | | | Bis (2-ethylhexyl) phthalate | *36 ₋ | Ċ | J 330. | ug/kg | 12/23/99 | | | Bis (2-chloroethyl) ether | BQL. | | 33.0. | ug/kg | 12/23/99 | | | Bis (2-chloroethoxy) methane | BQL | | 330. | ug/kg | 12/23/99 | | | Bis(2-chloro-1-methylethyl) e | BQL | | 330. | ug/kg | 12/23/99 | | | Benzyl alcohol | 9 7:) | j | ••• | ug/kg | 12/23/99 | | | Butyl benzylphthalate | BQL | | 330. | ug/kg | 12/23/99 | | | Chrysene | BQL | | 330. | ug/kg | 12/23/99 | | | Chlorobenzilate | BQL | | 330. | ug/kg | 12/23/99 | | | Diallate | BQL | | 330. | ug/kg | 12/23/99 | | | Dibenzo [a, h] anthracene | BQL | | 330 | ug/kg | 12/23/99 | | | Dibenzofuran | BQL | | 330. | ug/kg | 12/23/99 | | | Diethylphthalate | BQL | | 330. | ug/kg | 12/23/99 | | | Dimethoate | BQL | | 330. | ug/kg | 12/23/99 | | | Dimethyl phthalate | BQL | • | 330. | ug/kg | 12/23/99 | | | Di-n-octylphthalate | BQL | | 330. | ug/kg | 12/23/99 | Location Collected: Stripper Room Date Sample Collected: 12/02/1999 Sample Description: CC 006 Sample Description: CC 006 EAS Project Number: 3211-99 EAS Sample Number: 9913772 | | | , | Quantitation | | Analysis | |---|-------------------------------|------|--------------|-------|----------| | | Parameter | Data | Limit | Units | Date | | | Di-n-butylphthalate | BQL | 330. | ug/kg | 12/23/99 | | | Diphenylamine | BQL | 330. | ug/kg | 12/23/99 | | | Disulfoton | BQL | 330. | ug/kg | 12/23/99 | | | Ethyl methanesulfonate | BQL | 330. | ug/kg | 12/23/99 | | | Famphur | BQL | 330. | ug/kg | 12/23/99 | | | Fluoranthene | BQL | 330. | ug/kg | 12/23/99 | | | Fluorene | BQL | 330. | ug/kg | 12/23/99 | | | Hexachlorophene | BQL | 1600. | ug/kg | 12/23/99 | | | Hexachlorobenzene | BQL | 330. | ug/kg | 12/23/99 | | | Hexachlorobutadiene | BQL | 330. | ug/kg | 12/23/99 | | | Hexachlorocyclopentadiene | BQL | 330. | ug/kg | 12/23/99 | | | Hexachloroethane | BQL | 330. | ug/kg | 12/23/99 | | | Indeno (1,2,3-cd) pyrene | BQL | 330. | ug/kg | 12/23/99 | | | Isodrin | BQL. | 330. | ug/kg | 12/23/99 | | | Isophorone | BQL | 330. | ug/kg | 12/23/99 | | | Isosafrole | BQL | 330. | ug/kg | 12/23/99 | | | Kepone | BQL | 330. | ug/kg | 12/23/99 | | - | m-Cresol | BQL | 330. | ug/kg | 12/23/99 | | | m-Dinitrobenzene | BQL | 330. | ug/kg | 12/23/99 | | | Methyl methanesulfonate | BQL | 330. | ug/kg | 12/23/99 | | | Methapyrilene | BQL | 330. | ug/kg | 12/23/99 | | | Methyl parathion | BQL | 330. | ug/kg | 12/23/99 | | • | m-Nitroaniline | BQL | 1600. | ug/kg | 12/23/99 | | | Naphthalene | BQL | 330. | ug/kg | 12/23/99 | | | N-Nitrosodi-n-butylamine | BQL | 330. | ug/kg | 12/23/99 | | | Nitrobenzene | BQL | 330. | ug/kg | 12/23/99 | | | N-Nitrosodimethylamine . | BQL | 330. | ug/kg | 12/23/99 | | | N-Nitrosodi-n-propylamine | BQL | 330. | ug/kg | 12/23/99 | | | N-Nitrosodiphenylamine | BQL | 330. | ug/kg | 12/23/99 | | | N-Nitrosomethylethylamine | BQL | 330. | ug/kg | 12/23/99 | | | N-Nitrosodiethylamine | BQL | 330. | ug/kg | 12/23/99 | | | N-Nitrosomorpholine | BQL | 330. | ug/kg | 12/23/99 | | | N-Nitrosopiperidine | BQL | 330. | ug/kg | 12/23/99 | | | N-Nitrosopyrrolidine | BQL | 330. | ug/kg | 12/23/99 | | | o-Cresol | BQL | 330. | ug/kg | 12/23/99 | | | o-Nitroaniline | BQL | 1600. | ug/kg | 12/23/99 | | | o-Nitrophenol | BQL | 330. | ug/kg | 12/23/99 | | | 000-Triethyl phosphorothicate | BQL | 330. | ug/kg | 12/23/99 | | | o-Toluidine | BQL | 330. | ug/kg | 12/23/99 | | | Parathion | BQL | 330. | ug/kg | 12/23/99 | Location Collected: Stripper Room Date Sample Collected: 12/02/1999 Sample Description: CC 006 EAS Project Number: 3211-99 EAS Sample Number: 9913772 | Parameter | Data | Quantitation
Limit | Units | Analysis
Date | |---------------------------------|-------------|-----------------------|-------|------------------| | p-Chloroaniline | BQL | 330. | ug/kg | 12/23/99 | | p-Chloro-m-cresol | BQL | 330. | ug/kg | 12/23/99 | | p-Cresol | BQL | 330. | ug/kg | 12/23/99 | | Pentachlorobenzene | BQL | 330. | ug/kg | 12/23/99 | | Pentachloronitrobenzene | BQL | 1600. | ug/kg | 12/23/99 | | Pentachlorophenol | BQL | 1600. | ug/kg | 12/23/99 | | Phenacetin | BQL | 330. | ug/kg | 12/23/99 | | Phenanthrene | BQL | 330. | ug/kg | 12/23/99 | | Phenol | BQL | 330. | ug/kg | 12/23/99 | | Phorate | BQL | 330. | ug/kg | 12/23/99 | | p-Nitroaniline | BQL | 1600. | ug/kg | 12/23/99 | | p-Nitrophenol | BQL | 1600. | ug/kg | 12/23/99 | | p-Phenylenediamine | BQL | 330. | ug/kg | 12/23/99 | | Pronamide | BQL | 330. | ug/kg | 12/23/99 | | Pyrene | BQL | 330. | ug/kg | 12/23/99 | | Pyridine | BQL | 330. | ug/kg | 12/23/99 | | Safrole | BQL | 330. | ug/kg | 12/23/99 | | Sulfotepp | BQL | 330. | ug/kg | 12/23/99 | | sym-Trinitrobenzene | BQL | 330. | ug/kg | 12/23/99 | | Thionazin | BQL | 330. | ug/kg | 12/23/99 | | Benzo (a) anthracene | BQL | 330. | ug/kg | 12/23/99 | | Benzo (a) pyrene | BQL | 330. | ug/kg | 12/23/99 | | Benzo (b) fluoranthene | BQL | 330. | ug/kg | 12/23/99 | | Benzo (ghi) perylene | BQL | 330. | ug/kg | 12/23/99 | | Benzo (k) fluoranthene | BQL | 330. | ug/kg | 12/23/99 | | Appendix IX Herbicides - Method | SW-846-8150 | | | | | 2,4,5-T | BQL | 10. | ug/kġ | 12/21/99 | | 2,4,5-TP (Silvex) | BQL | 10. | ug/kg | 12/21/99 | | 2,4-D | BQL | 100. | ug/kg | 12/21/99 | | Dinoseb | BQL | 10. | ug/kg | 12/21/99 | | Appendix IX Pesticide and PCB's | | 6-8080 | | | | 4,4'-DDD | BQL | 200. | ug/kg | 12/23/99 | | 4,4'-DDE | BQL | 200. | ug/kg | 12/23/99 | | 4,4'-DDT | BQL | 200. | ug/kg | 12/23/99 | | Aldrin | BQL | 200. | ug/kg | 12/23/99 | | Chlordane | BQL | 200. | ug/kg | 12/23/99 | | Dieldrin | BQL | 200. | ug/kg | 12/23/99 | | Endosulfan sulfate | BQL | 200. | ug/kg | 12/23/99 | | | | | | · | Location Collected: Stripper Room Date Sample Collected: 12/02/1999 Sample Description: CC 006 EAS Project Number: 3211-99 EAS Sample Number: 9913772 | Parameter | Data | Quantitation
Limit | Units | Analysis
Date | |--------------------|------|-----------------------|----------------|------------------| | Endnin aldohuda | POT. | 200 | 42 | | | Endrin aldehyde | BQL | 200. | ug/kg | 12/23/99 | | Endrin | BQL | 200. | ug/kg | 12/23/99 | | Heptachlor | BQL | 200. | ug/kg | 12/23/99 | | Heptachlor epoxide | BQL | 200. | ug/kg | 12/23/99 | | Methoxychlor | BQL | 200. | ug/kg | 12/23/99 | | Aroclor 1016 | BQL | 200. | ug/kg | 12/23/99 | | Aroclor 1221 | BQL | 200. | ug/kg | 12/23/99 | | Aroclor 1232 | BQL | 200. | ug/kg | 12/23/99 | | Aroclor 1242 | BQL | 200. | ug/kg | 12/23/99 | | Aroclor 1248 | BQL | 200. | ug/kg | 12/23/99 | | Aroclor 1254 | BQL | 200. | ug/kg | 12/23/99 | | Aroclor 1260 | BQL | 200. | ug/kg | 12/23/99 | | Toxaphene | BQL | 200. | ug/kg | 12/23/99 | | a-BHC | BQL | 200. | ug/kg
ug/kg | 12/23/99 | | Endosulfan I | BQL | 200. | | | | b-BHC | | | ug/kg | 12/23/99 | | | BQL | 200. | ug/kg | 12/23/99 | | Endosulfan II | BQL | 200. | ug/kg | 12/23/99 | | d-BHC | BQL | 200. | ug/kg | 12/23/99 | | g-BHC (Lindane) | BQL | 200. | ug/kg | 12/23/99 | Location Collected: Stripper Room Date Sample Collected: 12/02/1999 Sample Description: CC 006 EAS Project Number: 3211-99 EAS Sample Number: 9913772 Date Sample Received: 12/02/1999 Quantitation Analysis Parameter Data Limit Units Date BQL = Below Quantitation Limit * Certification * Connecticut Certified Laboratory Number: PH 0558. New York Certified Laboratory Number: 10916 Massachusetts Certified Laboratory Number: CT 020 The above analyses were conducted in accordance with: - 1. APHA Standard Methods for the Examination of Water and Wastewater, 18th Edition, 1992. - Clean Water Act, List of Approved Test Procedures, 40 CFR. - 3. EPA Test Methods for the Evaluation of Solid Waste, SW-846, 3rd Edition, December, 1987. HRP Associates, Inc. 167 New Britain Avenue Plainville, CT 06062 Phone: 860-793-6899 # **HRP** Sheet _ 1 _ of _ 1 CHAIN OF CUSTODY oject Manager ADM | <u></u> | 00 / 3 | 3 007 | · | | | | | | | 1.0,0 | ce manager | | | | |---------------------------------------|-------------|----------|-------------------|---|---------------|-------------|-------------|-----------|---------------|---------------|------------|------|------------|--| | Place & Addr | ess of Col | lection | 1/1/21/ | | | | | Sample | rs Name (Sign | nature) | 10 | 1 | $\sim A$ | | | WA | RPB | 6177 | , Co | NNI | ITIC (Hampin) | | | | hn | hall but | | | | | | Sample
1.D. | Sample | Location | Container
Type | Total
Volume | F | reservative | | Date Time | | Sample Matrix | | | Remarks | | | CC 001 | Elic | Trans | <u>(a</u> | 800 | | Cox | | | | Corre pe 1C. | | AP | 778 | | | CCOUR | 1: | | G_{1} | <u>, , , , , , , , , , , , , , , , , , , </u> | | | | 1 - | 1962 | | | | i | | | CC 603 | -90 | DA T | G | | | | | | 10 | | 1 | | ļ | | | CC 004 | , | 1 | G | | | | | | 10 | | 7 | | 1 | | | CC 005 | STRIP | Y'P Cm | G | | | | | 1 | 1024 | | | | | | | CC 006 | | 1 | 6 | + | | 4. | 1 | 4 | 1030 | | 4
| | 1 | <u> </u> | | | | | | | | | | | | 1 | | | | 1 | , | | | | | Relinquished E | By (Signati | ure) | Lus | 10 | 1 | 7- Re | ceived By (| Signature | 1 | XA | Date 12 | 2-99 | Time /2:51 | | | Relinguished E | By (Signati | ure) | : | | | Re | ceived By (| Signature | | | Date | | Time | | | Name & Addr | ess of Lab | oratory: | EA | 5 | . (| om w∫ | i C 1 AL | 5 | ĩ, | M_{\odot} | DDIE KIP | 4 | | | | / Paramete | ers | | | | | | | Sampl | e ID | | | | | | | | | | CU | 1 | 102 | 003 | , 0 | 01 | 005 | 026 | | | | | | 40 CFF | 3 26 | 4 | X | | | X | | | X | | | | | | | Apr. IX | | | | | | | | | | | | | - ' | | | VOLATIL | | NST, | | | | | | | | | | | | | | · · · · · · · · · · · · · · · · · · · | | | | | | L | | | | | | | 1 | | | | | 001 | 667 | 003 | 001 | 005 | 026 | · · | | | |-------------|---------------|-----|-----|----------|----------|------|----------|----------|----------|------| | 40 CFR 26 | 4 | × | | X | | X | | | | | | APC. IX | | | | | | | | | | - ' | | VOLATILE CO | west, | | | | | | | | | | | ONLY | | | | | | | | | | | | | , | | | | | | | | | | | 40 CFR 264 | | | X | | <u> </u> | | X | | | | | APP. IX | | | | | / | | | | <u> </u> | | | NOW YEL COI | ν 57 . | | | | ·
 | | | | | | | oney | | | | , | | | | | | | | <u> </u> | · | · | <u> </u> | | | | | | | | | , | | | | | | | | | | | | <u> </u> | | | | <u> </u> | | } | | Remarks: | | | | HRP | CON | INCT | : W | IKC | CHE | V)WE | T - TCLP Analysis S - SPLP Analysis P - Plastic G - Glass Abbreviations: A - Amber M - Mass Analysis # APPENDIX D **Calculated Closure Standards** e\rdm\m\rcra closure summary HRP Associates Por MCC CALCULATIONS PM CRITERIA NON-CARCINOGENS # MACDERMID 526 Huntindon Ave Waterbury, CT HRP#MAC0028.RC | PREPARED BY: | | |--------------|--| | DATE: | | | CHECKED BY: | | | DATE: | | Calculated Media Closure Criteria for Pollutant Mobility, Non-Carcinogens | Example of Calcula
RfD _o (mg/kg-day)= | XXX | | (chemical-specific | c value) | |---|----------|----|--------------------|--| | • | | | | , | | HI= | 1.0 | | | | | BW (kg)= | 70 | | | | | AT (days)= | 25550 | | | | | SA = | 0.2 | | | | | IR (I/day)= | 2 | | | | | EF (days/year)= | 365 | | | | | ED (years)= | 70 | | | | | CF (mg/ug)= | 0.001 | | | | | GA/ | GAA PMC | = | (B4*B6)*((B7*B8 | 3*B9)/(B10*B11* (in ug/l) | | | GB PMC | = | 10*D15 (in ug | /I) | | | | OR | | | | | GB PMC | = | (20*D17)/ (in mg | g/kg) | | Dament standard | | | | | | <u>.Benzyl alcohol</u>
RfD _o (mg/kg-day)= | 0.3 | | (CDA NOCA Dag) | anal Curned | | RiD _o (ing/kg-day)- | 0.3 | | (EPA-NCEA Regi | | | 1.11 | | | Provisional Va | alue) | | HI= | 1.0 | | | • | | BW (kg)= | 70 | | | | | AT (days)= | 25550 | | | | | SA = | 0.2 | | | | | IR (I/day)= | 2
365 | | | | | EF (days/year)=
ED (years)= | 70 | | | | | | 0.001 | | , | | | CF (mg/ug)= | 0.001 | | | | | GA/ | GAA PMC | = | 2,100 ug/l | (Results via TCLP or SPLP) | | | GB PMC | = | 21,000 ug/l | (MCC for site soils, results via TCLP or SPLP) | | | | OR | | | | | | | : | | | • | GB PMC | = | 420 mg/kg | (MCC for for site soils, results via | mass analysis) | MCC CALCULATIONS | |----------------------------| | RESIDENTIAL SOIL INGESTION | | NON-CARCINOGENS | #### MACDERMID 526 Huntindon Ave, WATERBURY, CT HRP#MAC0028.RC | PREPARED BY: | | |--------------|--| | DATE: | | | CHECKED BY: | | | DATE: | | Calculated Media Closure Criteria for Residential Soil Ingestion, Non-Carcinogens | Example | of Calculation | with Cell | References | |---------|----------------|-----------|------------| | | | | | | RfD _o (mg/kg-day)= | XXX | | | |-------------------------------|----------|--------------------------|----------| | HI= | 1.0 | | | | IR _c (mg/day)≈ | 200 | IR_a (mg/day)= | 100 | | ED _c (years)≈ | 6 | ED _a (years)= | 24 | | EF (days/year)= | 365 | EF (days/year)= | 365 | | CF (kg/mg)= | 0.000001 | CF (kg/mg)= | 0.000001 | | BW _c (kg)≈ | 15 | BW_a (kg)= | 70 | | AT _c (days)= | 2190 | AT _a (days)= | 8760 | Residential DEC = (B4*B6)/(((B7*B8*B9*B10)/(B11*B12))+((E7*E8*E9*E10)/(E11*E12))) Results of calculation are in mg/kg. | Benzy | . 1 А | 1 | 1 | |-------|-------|-------|---| | Denzv | 'I A | ICONO | и | | RfD_o (mg/kg-day)= | 0.3 | (EPA-NCEA Regiona | al Support Pro | visional Value) | |---------------------------|----------|---------------------------|----------------|-----------------| | HI= | 1.0 | | | | | IR _c (mg/day)= | 200 | IR _a (mg/day)= | 100 | | | ED _c (years)= | 6 | ED _a (years)= | 24 | | | EF (days/year)= | 365 | EF (days/year)= | 365 | | | CF (kg/mg)= | 0.000001 | CF (kg/mg)= | 0.000001 | | | BW _c (kg)= | 15 | BW _a (kg)= | 70 | | | AT _c (days)= | 2190 | AT _a (days)= | 8760 | • | | | | | | | Residential DEC = 20,323 mg/kg # Calculated Media Closure Criteria for Pollutant Mobility, Non-Carcinogens ## Example of Calculation with Cell References | RfD _o (mg/kg-day)= | XXX | | (chemical | -specific v | value) | |--|--|---------|-----------|-------------------------|---| | HI= BW (kg)= AT (days)= SA = IR (l/day)= EF (days/year)= ED (years)= CF (mg/ug)= | 1.0
70
25550
0.2
2
365
70
0.001 | | | | | | GA | GAA PMC | = | (B4*B6)* | ((B7*B8*£ | 39)/(B10*B11* (in ug/l) | | | GB PMC | = | 10*D15 | (in ug/l) | • | | | | OR | | | | | | GB PMC | = | (20*D17) | (in mg/l | kg) | | 1. 1.4-Dioxane | | | | | | | RfD _o (mg/kg-day)= | 0.011 | ٠ | | EA Regior
ional Valu | nal Support
ue) | | HI= | 1.0
70
25550
0.2
2
365
70 | | | | | | CF (mg/ug)= | 0.001 | | | | | | GA | GAA PMC | = | 77 | ug/l | (Results via TCLP or SPLP) | | | GB PMC | =
OR | 770 | ug/l | (MCC for site soils, results via TCLP or SPLP) | | | GB PMC | · = | 15 | mg/kg | (MCC for for site soils, results via mass analysis) | # Calculated Media Closure Criteria for Residential Soil Ingestion, Non-Carcinogens # **Example of Calculation with Cell References** | RfD _o (mg/kg-day)= | XXX | | | |-------------------------------|----------|---------------------------|----------| | HI= | 1.0 | | | | IR_c (mg/day)= | 200 | IR _a (mg/day)= | 100 | | ED _c (years)= | 6 | ED _a (years)= | 24 | | EF (days/year)= | 365 | EF (days/year)= | 365 | | CF (kg/mg)= | 0.000001 | CF (kg/mg)= | 0.000001 | | $BW_c (kg) =$ | 15 | BW _a (kg)= | 70 | | AT _c (days)= | 2190 | AT _a (days)= | 8760 | Residential DEC = (B4*B6)/(((B7*B8*B9*B10)/(B11*B12))+((E7*E8*E9*E10)/(E11*E12))) Results of calculation are in mg/kg. #### 1.4-dioxane | RfD _o (mg/kg-day)= | 0.011 | (EPA-NCEA Regional Support Provisional Value | | | |-------------------------------|----------|--|----------|---| | HI= | 1.0 | , | | | | IR_c (mg/day)= | 200 | IR _a (mg/day)= | 100 | | | ED _c (years)= | 6 | ED _a (years)= | 24 | | | EF (days/year)= | 365 | EF (days/year)= | . 365 | | | CF (kg/mg)= | 0.000001 | CF (kg/mg)= | 0.000001 | | | BW_c (kg)= | 15 | BW _a (kg)= | 70 | | | AT _c (days)= | 2190 | AT _a (days)= | 8760 | ovina de la Seria de la Carte | Residential DEC = 745 mg/kg #### Calculated Media Closure Criteria for Pollutant Mobility, Non-Carcinogens #### **Example of Calculation with Cell References** | RfD₀ (mg/kg-day)= | XXX | | (chemical-s | pecific valu | Je) | |-------------------------------|---------|----|-------------|--------------|--| | HI= | 1.0 | | | ÷ | · | | BW (kg)= | 70 | | | | | | AT (days)= | 25550 | | | | | | SA = | 0.2 | | • | | | | IR
(I/day)= | 2 | | | | | | EF (days/year)= | 365 | | | | | | ED (years)= | 70 | | | | | | CF (mg/ug)= | 0.001 | | | | | | GA | GAA PMC | = | (B4*B6)*((E | 37*B8*B9 | /(B10*B11* (in ug/l) | | | GB PMC | = | 10*D15 (| (in ug/l) | | | | | OR | | | | | | GB PMC | = | (20*D17)/ (| in mg/kg) | | | 1. Tin | | | | | | | RfD _o (mg/kg-day)= | 0.6 | | (EPA-NCEA | Regional | Support | | | | | Provisio | nal Value) | | | HI= | 1.0 | | | | | | BW (kg)= | 70 | | | | , | | AT (days)= | 25550 | | | . • | | | SA = | 0.2 | | | | | | IR (I/day)= | 2 | | | | | | EF (days/year)= | 365 | | | | • | | ED (years)= | . 70 | | | | · <i>,</i> | | CF (mg/ug)= | 0.001 | | | | | | GA/0 | GAA PMC | = | 4,200 t | ıg/l | (Results via TCLP or SPLP) | | | 00.000 | • | | _ | | | · | GB PMC | = | 42,000 t | ıg/I | (MCC for site soils, results via TCLP or SPLP) | | | | OR | | | | | | GB PMC | = | 840 r | ng/kg | (MCC for for site soils, results via | | | | | | - | mass analysis) | #### Calculated Media Closure Criteria for Residential Soil Ingestion, Non-Carcinogens ## Example of Calculation with Cell References | | | XXX | RfD _o (mg/kg-day)= | |----------|---------------------------|----------|-------------------------------| | | * | 1.0 | HI= | | 100 | IR _a (mg/day)= | 200 | IR _c (mg/day)= | | 24 | ED _a (years)= | 6 | ED _c (years)= | | 365 | EF (days/year)= | 365 | EF (days/year)= | | 0.000001 | CF (kg/mg)= | 0.000001 | CF (kg/mg)= | | 70 | $BW_a (kg) =$ | 15 | BW _c (kg)= | | 8760 | AT _a (days)= | 2190 | AT _c (days)≃ | | | | | | #### Residential DEC = (B4*B6)/(((B7*B8*B9*B10)/(B11*B12))+((E7*E8*E9*E10)/(E11*E12))) Results of calculation are in mg/kg. | 01
70
60 | |----------------------| | | |)1 | | | | 65 | | 24 | | 00 | | | | t Provisional Value) | | | ### APPENDIX E January 13, 2000 Sampling Results e\rdm\m\rcra closure summary HRP P.01 EAS LABORATORIES # FACSIMILE COVER PAGE | Date: | February 4, 2000 | | | | |--------------------|--|------|--------|-------------------------------| | To: | Mike C. | | | | | Firm: | HRP | . | | | | Fax Number | r: 860 793-6871 | | | | | From: | Напу М | | | | | | er of pages to be sent (including cover sheet): to follow: YESNO | | | | | Message: | | | | | | Report. | | | | | | Thank you
Harry | | | | | | | ******************************* | **** | ****** | ;
==+==******************* | This message is intended only for the use of the individual to whom, or entity to which, it is addressed and may contain information that is privileged, confidential and exempt from disclosure under applicable law. If the reader of this message is not the intended recipient or the employee or agent responsible for delivering the message to the intended recipient, you are hereby notified that any dissemination, distribution, or copying of this communication is prohibited. If you have received this communication in error, please notify us immediately by telephone (collect), and return the original message to us at the above address. Thank you. Location Collected: MacDermid Inc., 526 Huntingdon Ave., Waterbury, CT Date Sample Collected: 01/13/00 Sample Description: 014 - NMP 2 EAS Project Number: 00010195 EAS Sample Number: 00010195-06 Date Sample Received: 01/13/00 | | | • | | Detection | | Analysis | |-------------------------------|----------|-------|-----------|-----------------|-------|----------| | Parameter | <u>:</u> | | Data | Limit | Units | Date | | Cyanide, Solid | | | BDL | 5.0 | mg/kg | 01/24/00 | | Percent Solids, Solid | 1 . | | 95.6 | 1.0 | % | 01/20/00 | | Sulfide-Total, Solid | | | 10 | 10 | mg/kg | 01/21/00 | | Arsenic, Leachable | <u>.</u> | | BDL | 0.10 | mg/L | 01/25/00 | | Arsenic, Solid | | • | BDL | 2.0 | mg/kg | 01/19/00 | | Barium, Leachable | : ; | : | 0.58 | 0.0050 | mg/L | 01/24/00 | | Barium, Solid | | | 81 | 0.10 | mg/kg | 01/19/00 | | Cadmium, Leachable | : | | BDL | 0.010 | mg/L | 01/24/00 | | Cadmium, Solid | • | | 4.4 | 0.10 | mg/kg | 01/19/00 | | Chromium, Leachable | : | | 0.68 | 0.020 | mg/L | 01/24/00 | | Chromium, Solid | | | 8.6 | 0.40 | mg/kg | 01/19/00 | | Copper, Leachable | | | 0.92 | 0.010 | mg/L | 01/24/00 | | Copper, Solid | : | | 170 | 0.20 | mg/kg | 01/19/00 | | Lead, Leachable | : | | BDL | 0.050 | mg/L | 01/24/00 | | Lead, Solid | | | 64 | 1.0 | mg/kg | 01/19/00 | | Metals Digestion for 6010B, L | eachate | | Completed | | i | 01/21/00 | | Metals Digestion for 6010B, S | olid | • | Completed | | | 01/18/00 | | Nickel, Leachable | : | . : . | 0.44 | 0.020 | mg/L | 01/24/00 | | Nickel, Solid | ;
; | | 47 | 0.40 | mg/kg | 01/19/00 | | Tin, Leachable | | | 0.066 | 0.010 | mg/L | 01/24/00 | | Tin, Solid | | i • | 180 | 0.20 | mg/kg | 01/19/00 | | Zinc, Leachable | • | | 7.3 | 0.0050 | mg/L | 01/24/00 | | Zinc, Solid | • | | 510 | 0.10 | mg/kg | 01/19/00 | | BNA Extraction, Solid | • | | Completed | | ; | 01/27/00 | | EP Toxicity Leaching Procedu | re | : | Completed | | | 01/19/00 | | Method 8270, Solid | | : | • | | | • | | Bis (2-ethylhexyl) phthalate | ; | • | 1200 | 330 | ug/kg | 01/29/00 | | Benzyl Alcohol | 1 | | BDL | 330 | ug/kg | 01/29/00 | | Volatile Organic Compounds, | Solid | | | · · · | | : | | Acetone | • . | | 36 | 25 | ug/kg | 01/27/00 | | 2-Butanone | • | | BDL | 10 | ug/kg | 01/27/00 | | Chlorobenzene | | | BDL | 10 | ug/kg | 01/27/00 | | Ethyl Benzene | | • | BDL | 10 | ug/kg | 01/27/00 | | Isobutanol | | | BDL | 10 | ug/kg | 01/27/00 | | Methylene Chloride | ; | • | BDL | 10 | ug/kg | 01/27/00 | | Tetrachloroethylene | ! | | BDL | 10 _: | ug/kg | 01/27/00 | | | | | | | | | TO HRP Associates, Inc. Location Collected: MacDermid Inc., 526 Huntingdon Ave., Waterbury, CT Date Sample Collected: 01/13/00 Sample Description: 014 - NMP 2 EAS Project Number: 00010195 EAS Sample Number: 00010195-06 Date Sample Received: 01/13/00 | | | Detection | . : | Analysis | |------------------------|----------------|-----------|-------|-------------| | Parameter | Data | Limit | Units | <u>Date</u> | | Toluene | BDL | 10 | ug/kg | 01/27/00 | | 1,1,1-Trichloroethane | BDL | 10 | ug/kg | 01/27/00 | | Trichlorofluoromethane | \mathtt{BDL} | 10 | ug/kg | 01/27/00 | | Trichloroethylene | BDL | 10 | ug/kg | 01/27/00 | | Xylene | BDL | 10 | ug/kg | 01/27/00 | Ø 002 EAS LABORATORIES 13:33 FEB-02-2000 92033755416 | ; | | ACSIM | ILE COV | ER PA | 3L | <u>!</u> | | |----------|-----------------------|---------------|---------------------------------------|---------------------------------------|---------|------------------|-------| | Date: | February | 2, 2000 | | | | :
: | | | To: | Mr. Greg | Strong : | | | • | | • • • | | Firm: | MacDerm | id | | | | | | | Fax Num | ber: 203 575-59 | 16 | i
· | | · · · | : | | | From: | Greg | | : | ;
; | : | :
: | | | | nber of pages to | 1 . , | • • • | ect): | | | | | Message: | | | : | ;
; | :
·: | i . | | | Attached | are the analytic | al reports fo | r the concrete : | samples. | ì | • | | | Thank yo | u, | | · · · · · · · · · · · · · · · · · · · | | : | : | | | | intended only for the | 1 | al to whom, or entity | · · · · · · · · · · · · · · · · · · · | | hay contain info | | employee or agent responsible for delivering the message to the intended recipient, you are bereby notified that any dissemination, distribution, or copying of this communication is probiblied. If you have received this communication in error, please notify us immediately by telephone (collect), and return the original message to us at the above address. Thank you. Location Collected: MacDermid Inc., 526 Huntingdon Ave., Waterbury, CT Date Sample Collected: 01/13/00 Sample Description: 004 - Solder St. 2 EAS Project Number: 00010195 EAS Sample Number: 00010195-01 Date Sample Received: 01/13/00 | | • | Detection | • | Analysis | |---------------------------------------|-----------|-----------|---------------|-----------| | Parameter | Data | Limit | Units | Date | | Cyanide, Solid. | BDL | 5.0 | mg/kg | 01/24/00. | | Percent Solids, Solid | 82.5 | 1.0 | % | 01/20/00 | | Sulfide-Total, Solid | BDL | 10 | mg/kg | 01/21/00 | | Barium, Leachable | 0.096 | 0.0050 | mg/L | 01/24/00 | | Barium, Solid | 170 | 0.10 | mg/kg | 01/18/00 | | Cadmium, Leachable | 0.077 | 0.010 | mg/L | 01/24/00 | | Cadmium, Solid | 49 | 0.10 | mg/kg | 01/18/00 | | Chromium, Leachable | 1.3 | 0.020 | mk\T
— | 01/24/00 | | Chromium, Solid | 730 | 0.40 | mg/kg | 01/18/00 | | Copper, Leachable | 5.9 | 0.010 | mg/L | 01/24/00 | | Copper, Solid | 3000 | 0.20 | mg/kg | 01/18/00 | | Lead, Leachable | BDL | 0.050 | mg/L | 01/24/00 | | Lead, Solid | 1300 | 1.0 | mg/kg
mg/L | 01/18/00 | | Metals Digestion for 60'10B. Leachate | Completed | | mg/rg | 01/21/00 | | Metals Digestion for 6010B, Solid | Completed | | | 01/21/00 | | Nickel, Leachable | 0.17 | 0.020 | mg/L | 01/24/00 | | Nickel, Solid | 90 | 0.40 | mg/kg | 01/18/00 | | Tin, Leachable | 22 | 0.010 | mg/L | 01/24/00 | | Tin, Solid | 12000 | 0.20 | mayka
men | 01/24/00 | | Zinc, Leachable | 0.65 | 0.0050 | mg/L | 01/24/00 | | Zinc, Solid | 210 | 0.10 | mg/kg | 01/18/00. | | BNA Extraction, Solid | Completed | | me, ve | 01/27/00 | | EP Toxicity Leaching Procedure | Completed | | | 01/19/00 | | Method 8270, Solid | | | | 01/15/00 | | Bis (2-ethylhexyl) phthalate | BDL | 330 | ug/kg | 01/31/00 | | Butyl benzylphthalate | 147000 | 330 | ug/kg | 01/31/00 | | Di-n-butylphthslate | BDL | 330 | ug/kg | 01/31/00 | | Di-n-octylphthalate | BDL | 330 | ug/kg | 01/31/00 | | Benzyl Alcohol | BDL | 330 | ug/kg | 01/31/00 | | Volatile Organic Compounds, Solid. | | | -6.16 | 01,4,2,00 | | Acetone | 69 | 25 | ug/kg | 01/27/00 | | 2-Butanone | 17 | 10 | ug/kg | 01/27/00 | | Chlorobenzene | BDI. | 10 | ug/kg | 01/27/00 | | 1,4-Dioxane | BDL | 100 | ug/kg | 01/27/00 | | Ethyl Benzene | 16 | 10 | ng/kg | 01/27/00 | | Isobutanol | BDL | 10 | ug/kg | 01/27/00 | | | | | | 52.2 | FEB-02-2000 13:34 FROM FAS LABORATORIES HRP Associates, Inc. Location Collected:
MacDermid Inc., 526 Huntingdon Avc., Waterbury, CT Date Sample Collected: 01/13/00 Sample Description: 004 - Solder St. 2 EAS Project Number: 00010195 EAS Sample Number: 00010195-01 Date Sample Received: 01/13/00 | | | Detection | • | Analysis | |------------------------|------|-----------|-------|----------| | Parameter | Data | Limit | Units | Date | | Methylene Chloride | 13 | 10 | ug/kg | 01/27/00 | | 4-Methyl-2-Pentanone | BDI. | 10 | ug/kg | 01/27/00 | | Tetrachloroethylene | 13 | 10 | ng/kg | 01/27/00 | | Toluene | BDL | 10 | ug/kg | 01/27/00 | | 1,1,1-Trichloroethame | BDL | 10 | ug/kg | 01/27/00 | | Trichlorofluoromethane | BDL | 10 | ug/kg | 01/27/00 | | Trichloroethylene | 140 | 10 | ug/kg | 01/27/00 | | Xylene | BDL | 10 | ug/kg | 01/27/00 | Location Collected: MacDermid Inc., 526 Huntingdon Ave., Waterbury, CT Date Sample Collected: 01/13/00 Sample Description: 010 - Equip. Blank EAS Project Number: 00010195 EAS Sample Number: 00010195-02 Date Sample Received: 01/13/00 | Parameter | | : : | | : | | | | | |---|---------------------------------------|-------------|-------------|---|--|--|----------------|------------| | Cyanide, Water | Danamatan | • | | • | D-4 |) } } | | Analysis | | Sulfide Water BDL | | | | | | <u> Lamit</u> | Units | Date | | Arsenic, Water BDL 0.10 mg/L 01/20/0 Barium, Water BDL 0.0050 mg/L 01/19/0 Cadmium, Water BDL 0.0050 mg/L 01/19/0 Chromium, Water BDL 0.0050 mg/L 01/19/0 Copper, Water BDL 0.010 mg/L 01/19/0 Lead, Water BDL 0.050 mg/L 01/19/0 Metals Digestion for 200.7, Water BDL 0.050 mg/L 01/19/0 Metals Digestion for 200.7, Water BDL 0.020 mg/L 01/19/0 Metals Digestion for 200.7, Water BDL 0.020 mg/L 01/19/0 Metals Digestion for 200.7, Water BDL 0.020 mg/L 01/19/0 Metals Digestion for 200.7, Water BDL 0.020 mg/L 01/19/0 Tin, Water BDL 0.010 mg/L 01/19/0 BNA Extraction, Water Completed Method 8270, Water Bis (2-ethylhexyl) phthalate BDL 10 ug/L 02/02/0 Bis (2-ethylhexyl) phthalate BDL 10 ug/L 02/02/0 Din-butylphthalate BDL 10 ug/L 02/02/0 Din-butylphthalate BDL 10 ug/L 02/02/0 Benzyl Alcohol BDL 10 ug/L 02/02/0 Volatile Organic Compounds, Water Volatile Organic Compounds, Water Volatile Organic Compounds, Water Acetone 5 0.50 ug/L 01/18/0 Chloromethane BDL 0.50 ug/L 01/18/0 Chloromethane BDL 0.50 ug/L 01/18/0 Chlorobenzene BDL 0.50 ug/L 01/18/0 Vinyl Chloride BDL 0.50 ug/L 01/18/0 Bromomethane Chlorocthane BDL 0.50 ug/L 01/18/0 Bromomethane BDL 0.50 ug/L 01/18/0 Chlorocthane | | | • | | | 0.010 | mg/L | 01/25/00 | | Barium, Water | | | • | | | 1.0 | mg/L | 01/21/00 | | Cadmium, Water | | | • | • | | 0.10 | mg/L | 01/20/00 | | Chromium, Water | | | : | | | 0.0050 | mg/L | 01/19/00 | | Copper, Water | • | | | : | BDL | 0.0050 | mg/L | 01/19/00 | | Lead, Water BDL 0.050 mg/L 01/19/0 | | | | • | BDL | 0.020 | mg/L | 01/19/00 : | | Metals Digestion for 200.7, Water Completed 01/18/0 Nickel, Water BDL 0.020 mg/L 01/19/0 Tin, Water BDL 0.010 mg/L 01/19/0 Zinc, Water 0.026 0.010 mg/L 01/19/0 BNA Extraction, Water Completed mg/L 01/19/0 Method 8270, Water BDL 10 ug/L 02/02/0 Butyl benzylphthalate BDL 10 ug/L 02/02/0 Butyl benzylphthalate BDL 10 ug/L 02/02/0 Di-n-butylphthalate BDL 10 ug/L 02/02/0 Di-n-octylphthalate BDL 10 ug/L 02/02/0 Di-n-octylphthalate BDL 10 ug/L 02/02/0 Volatile Organic Compounds, Water Water Volatile Organic Compounds, Water Volatile Organic Compounds, Water Acetone 5 0.50 ug/L 01/18/0 Chlorofluoromethane BDL 0.50 ug/L 01/18/0 Chloroben | | | ' 1 | | \mathtt{BDL} | 0.010 | mg/L | 01/19/00 | | Metals Digestion for 200.7, Water Completed 0.020 mg/L 01/18/00 Nickel, Water BDL 0.020 mg/L 01/19/00 Tin, Water BDL 0.010 mg/L 01/19/00 BNA Extraction, Water Completed mg/L 01/19/00 Method 3270, Water BDL 10 ug/L 02/02/00 Butyl benzylphthalate BDL 10 ug/L 02/02/00 Butyl benzylphthalate BDL 10 ug/L 02/02/00 Di-n-butylphthalate | Lead, Water | : ; | , | · | BDL | 0.050 | mg/L | 01/19/00 | | Tin, Water | • | 200.7, W | Vater | • | Completed | ! | | 01/18/00 | | Tin, Water BDL 0.d10
mg/L 01/19/00 Zinc, Water 0.026 0.d10 mg/L 01/19/00 BNA Extraction, Water Completed 01/20/00 Method 8270, Water BDL 10 ug/L 02/02/00 Method 8270, Water BDL 10 ug/L 02/02/00 Butyl benzylphthalate BDL 10 ug/L 02/02/00 Di-n-butylphthalate BDL 10 ug/L 02/02/00 Benzyl Alcohol BDL 10 ug/L 02/02/00 Benzyl Alcohol BDL 10 ug/L 02/02/00 Volatile Organic Compbunds, Water Volatile Organic Compounds, Water Volatile Organic Compounds, Water Vol. 0.50 ug/L 01/18/00 Acetone 5 0.50 ug/L 01/18/00 0.00 ug/L 01/18/00 Chloromethane BDL 0.50 ug/L 01/18/00 0.00 ug/L 01/18/00 0.00 0.00 0.00 0.00 0.00 0. | | : : | , | | BDL | 0.020 | mg/L | 01/19/00 | | Zinc, Water 0.026 0.010 mg/L 01/19/01 | Tin, Water | ! ! | ' : | | BDL | 0.d10 | • | 01/19/00 | | BNA Extraction, Water Completed | Zinc, Water | : : | : | | 0.026 | 0.010 | - | 01/19/00 | | Method 8270, Water Bis (2-ethylhexyl) phthalate BDL 10 ug/L 02/02/00 Butyl benzylphthalate BDL 10 ug/L 02/02/00 Di-n-butylphthalate BDL 10 ug/L 02/02/00 Di-n-octylphthalate BDL 10 ug/L 02/02/00 Benzyl Alcohol BDL 10 ug/L 02/02/00 Volatile Organic Compounds, Water Volatile Organic Compounds, Water Volatile Organic Compounds, Water Vol. 0.50 ug/L 01/18/00 Acetone 5 0.50 ug/L 01/18/00 0.00 <t< td=""><td>BNA Extraction, Wa</td><td>ter</td><td></td><td>•</td><td>Completed</td><td></td><td>v</td><td>01/20/00</td></t<> | BNA Extraction, Wa | ter | | • | Completed | | v | 01/20/00 | | Butyl benzylphthalate BDL 10 ug/L 02/02/06 Di-n-butylphthalate BDL 10 ug/L 02/02/06 Di-n-octylphthalate BDL 10 ug/L 02/02/06 Benzyl Alcohol BDL 10 ug/L 02/02/06 Volatile Organic Compounds, Water Volatile Organic Compounds, Water 0.50 ug/L 01/18/06 Acetone 5 0.50 ug/L 01/18/06 Chlorofluoromethane BDL 0.50 ug/L 01/18/06 Chloromethane BDL 0.50 ug/L 01/18/06 2-Butanone BDL 0.50 ug/L 01/18/06 Chlorobenzene BDL 0.50 ug/L 01/18/06 Vinyl Chloride BDL 0.50 ug/L 01/18/06 1,4-Dioxane BDL 0.50 ug/L 01/18/06 Bromomethane BDL 0.50 ug/L 01/18/06 Ethyl Benzene BDL 0.50 ug/L 01/18/06 | Method 8270, Water | | | | - | | | | | Butyl benzylphthalate BDL 10 ug/L 02/02/00 Di-n-butylphthalate BDL 10 ug/L 02/02/00 Di-n-octylphthalate BDL 10 ug/L 02/02/00 Benzyl Alcohol BDL 10 ug/L 02/02/00 Volatile Organic Compounds, Water Volatile Organic Compounds, Water 0.50 ug/L 01/18/00 Acetone 5 0.50 ug/L 01/18/00 Chlorofluoromethane BDL 0.50 ug/L 01/18/00 2-Butanone BDL 0.50 ug/L 01/18/00 Chlorobenzene BDL 0.50 ug/L 01/18/00 Vinyl Chloride BDL 0.50 ug/L 01/18/00 1,4-Dioxane BDL 0.50 ug/L 01/18/00 Bromomethane BDL 0.50 ug/L 01/18/00 Ethyl Benzene BDL 0.50 ug/L 01/18/00 Chloroethane BDL 0.50 ug/L 01/18/00 | Bis (2-ethylhexyl) | phthalat | e : | | BDL | 10 | ug/L | 02/02/00 | | Di-n-butylphthalate BDL 10 ug/L 02/02/00 Di-n-octylphthalate BDL 10 ug/L 02/02/00 Benzyl Alcohol BDL 10 ug/L 02/02/00 Volatile Organic Compounds, Water 00 ug/L 01/18/00 Acetone 5 0.50 ug/L 01/18/00 Dichlorofluoromethane BDL 0.50 ug/L 01/18/00 Chloromethane BDL 0.50 ug/L 01/18/00 2-Butanone BDL 0.50 ug/L 01/18/00 Chlorobenzene BDL 0.50 ug/L 01/18/00 Vinyl Chloride BDL 0.50 ug/L 01/18/00 1,4-Dioxane BDL 0.50 ug/L 01/18/00 Bromomethane BDL 0.50 ug/L 01/18/00 Ethyl Benzene BDL 0.50 ug/L 01/18/00 Chloroethane BDL 0.50 ug/L 01/18/00 Trichlorofluoromethane BDL | Butyl benzylphtha | late | | · | BDL | 10 | • | • | | Di-n-octylphthalate | Di-n-butylphthala | te | | 1 | BDL | 10 | • | 02/02/00 | | Benzyl Alcohol BDL 10 ug/L 02/02/00 | Di-n-octylphthalat | æ : | | 1 | BDL | . [] | — . | • | | Volatile Organic Compounds, Water 5 0.50 ug/L 01/18/06 Acetone 5 0.50 ug/L 01/18/06 Dichlorofluoromethane BDL 0.50 ug/L 01/18/06 Chloromethane BDL 0.50 ug/L 01/18/06 2-Butanone BDL 0.50 ug/L 01/18/06 Chlorobenzene BDL 0.50 ug/L 01/18/06 Vinyl Chloride BDL 0.50 ug/L 01/18/06 1,4-Dioxane BDL 0.50 ug/L 01/18/06 Bromomethane BDL 0.50 ug/L 01/18/06 Ethyl Benzene BDL 0.50 ug/L 01/18/06 Chloroethane BDL 0.50 ug/L 01/18/06 Trichlorofluoromethane BDL 0.50 ug/L 01/18/06 Isobutanol BDL 0.50 ug/L 01/18/06 Acetone 5.0 5.0 ug/L 01/18/06 Methylene Chloride BD | Benzyl Alcohol | • | | | BDL | | _ | | | Acetone 5 0.50 ug/L 01/18/00 Dichlorofluoromethane BDL 0.50 ug/L 01/18/00 Chloromethane BDL 0.50 ug/L 01/18/00 2-Butanone BDL 0.50 ug/L 01/18/00 Chlorobenzene BDL 0.50 ug/L 01/18/00 Vinyl Chloride BDL 0.50 ug/L 01/18/00 1,4-Dioxane BDL 0.50 ug/L 01/18/00 Bromomethane BDL 0.50 ug/L 01/18/00 Ethyl Benzene BDL 0.50 ug/L 01/18/00 Chloroethane BDL 0.50 ug/L 01/18/00 Trichlorofluoromethane BDL 0.50 ug/L 01/18/00 Isobutanol BDL 0.50 ug/L 01/18/00 Methylene Chloride BDL 0.50 ug/L 01/18/00 | Volatile Organic Con | pbunds, | Water | • | | | | 02.03.00 | | Dichlorofluoromethane BDL 0.50 ug/L 01/18/00 Chloromethane BDL 0.50 ug/L 01/18/00 2-Butanone BDL 0.50 ug/L 01/18/00 Chlorobenzene BDL 0.50 ug/L 01/18/00 Vinyl Chloride BDL 0.50 ug/L 01/18/00 1,4-Dioxane BDL 0.50 ug/L 01/18/00 Bromomethane BDL 0.50 ug/L 01/18/00 Ethyl Benzene BDL 0.50 ug/L 01/18/00 Chloroethane BDL 0.50 ug/L 01/18/00 Trichlorofluoromethane BDL 0.50 ug/L 01/18/00 Isobutanol BDL 0.50 ug/L 01/18/00 Acetone 5.0 5.0 ug/L 01/18/00 Methylene Chloride BDL 0.50 ug/L 01/18/00 | Volatile Organic Con | pounds, | Water | | • | | | • | | Dichlorofluoromethane BDL 0.50 ug/L 01/18/00 Chloromethane BDL 0.50 ug/L 01/18/00 2-Butanone BDL 0.50 ug/L 01/18/00 Chlorobenzene BDL 0.50 ug/L 01/18/00 Vinyl Chloride BDL 0.50 ug/L 01/18/00 1,4-Dioxane BDL 0.50 ug/L 01/18/00 Bromomethane BDL 0.50 ug/L 01/18/00 Ethyl Benzene BDL 0.50 ug/L 01/18/00 Chloroethane BDL 0.50 ug/L 01/18/00 Trichlorofluoromethane BDL 0.50 ug/L 01/18/00 Isobutanol BDL 0.50 ug/L 01/18/00 Methylene Chloride BDL 0.50 ug/L 01/18/00 | Acetone | | | : | 5 | 0.50 | ue/I. | 01/18/00 | | Chloromethane BDL 0.50 ug/L 01/18/00 2-Butanone BDL 0.50 ug/L 01/18/00 Chlorobenzene BDL 0.50 ug/L 01/18/00 Vinyl Chloride BDL 0.50 ug/L 01/18/00 1,4-Dioxane BDL 0.50 ug/L 01/18/00 Bromomethane BDI 0.50 ug/L 01/18/00 Ethyl Benzene BDL 0.50 ug/L 01/18/00 Chloroethane BDL 0.50 ug/L 01/18/00 Trichlorofluoromethane BDL 0.50 ug/L 01/18/00 Isobutanol BDL 0.50 ug/L 01/18/00 Acetone 5.0 5.0 ug/L 01/18/00 Methylene Chloride BDL 0.50 ug/L 01/18/00 | Dichlorofluoromet | hane | ; ; | • | BDL | l i | | | | 2-Butanone BDL 0.50 ug/L 01/18/00 Chlorobenzene BDL 0.50 ug/L 01/18/00 Vinyl Chloride BDL 0.50 ug/L 01/18/00 1,4-Dioxane BDL 0.50 ug/L 01/18/00 Bromomethane BDL 0.50 ug/L 01/18/00 Ethyl Benzene BDL 0.50 ug/L 01/18/00 Chloroethane BDL 0.50 ug/L 01/18/00 Trichlorofluoromethane BDL 0.50 ug/L 01/18/00 Isobutanol BDL 0.50 ug/L 01/18/00 Acetone 5.0 5.0 ug/L 01/18/00 Methylene Chloride BDL 0.50 ug/L 01/18/00 | Chloromethane | ÷ | • | | BDL | i : | | | | Chlorobenzene BDL 0.50 ug/L 01/18/00 Vinyl Chloride BDL 0.50 ug/L 01/18/00 1,4-Dioxane BDL 0.50 ug/L 01/18/00 Bromomethane BDL 0.50 ug/L 01/18/00 Ethyl Benzene BDL 0.50 ug/L 01/18/00 Chloroethane BDL 0.50 ug/L 01/18/00 Trichlorofluoromethane BDL 0.50 ug/L 01/18/00 Isobutanol BDL 0.50 ug/L 01/18/00 Acetone 5.0 5.0 ug/L 01/18/00 Methylene Chloride BDL 0.50 ug/L 01/18/00 | 2-Butanone | : | | | | the state of s | • | • | | Vinyl Chloride BDL 0.50 ug/L 01/18/00 1,4-Dioxane BDL 0.50 ug/L 01/18/00 Bromomethane BDL 0.50 ug/L 01/18/00 Ethyl Benzene BDL 0.50 ug/L 01/18/00 Chloroethane BDL 0.50 ug/L 01/18/00 Trichlorofluoromethane BDL 0.50 ug/L 01/18/00 Isobutanol BDL 0.50 ug/L 01/18/00 Acetone 5.0 5.0 ug/L 01/18/00 Methylene Chloride BDL 0.50 ug/L 01/18/00 | Chlorobenzene | | | | | 1 1 . | | | | 1,4-Dioxane BDL 0.50 ug/L 01/18/00 Bromomethane BDI. 0.50 ug/L 01/18/00 Ethyl Benzene BDL 0.50 ug/L 01/18/00 Chloroethane BDL 0.50 ug/L 01/18/00 Trichlorofluoromethane BDL 0.50 ug/L 01/18/00 Isobutanol BDL 0.50 ug/L 01/18/00 Acetone 5.0 5.0 ug/L 01/18/00 Methylene Chloride BDL 0.50 ug/L 01/18/00 | Vinyl Chloride | : • | | | | | | | | Bromomethane BDI. 0.50 ug/L 01/18/00 Ethyl Benzene BDL 0.50 ug/L 01/18/00 Chloroethane BDL 0.50 ug/L 01/18/00 Trichlorofluoromethane BDL 0.50 ug/L 01/18/00 Isobutanol BDL 0.50 ug/L 01/18/00 Acetone 5.0 5.0 ug/L 01/18/00 Methylene Chloride BDL 0.50 ug/L 01/18/00 | 1,4-Dioxane | ; · | i : | | | 1 1 1 | | | | Ethyl Benzene BDL 0.50 ug/L 01/18/00 Chloroethane BDL 0.50 ug/L 01/18/00 Trichlorofluoromethane BDL 0.50 ug/L 01/18/00 Isobutanol BDL 0.50 ug/L 01/18/00 Acetone 5.0 5.0 ug/L 01/18/00 Methylene Chloride BDL 0.50 ug/L 01/18/00 | | | : ! | | and the second s | i | | | | Chloroethane BDL 0.50 ug/L 01/18/00 Trichlorofluoromethane BDL 0.50 ug/L 01/18/00 Isobutanol BDL 0.50 ug/L 01/18/00 Acetone 5.0 5.0 ug/L 01/18/00 Methylene Chloride BDL 0.50 ug/L 01/18/00 | Ethyl Benzene | : : | | | | | | | | Trichlorofluoromethane BDL 0.50 ug/L 01/18/00 Isobutanol BDL 0.50 ug/L 01/18/00 Acetone 5.0 5.0 ug/L 01/18/00 Methylene Chloride BDL 0.50 ug/L 01/18/00 | | | \$ | | | 1 1 . | • | | | Isobutanol BDL 0.50 ug/L 01/18/00 Acetone 5.0 5.0 ug/L 01/18/00 Methylene Chloride BDL 0.50 ug/L 01/18/00 | | hane | | | | | | | | Acetone 5.0 5.0 ug/L 01/18/00 Methylene Chloride BDL 0.50 ug/L 01/18/00 | | | | • | | 1 : | ; -·· | | | Methylene Chloride BDL 0.50 ug/L 01/18/00 | · · · · · · · · · · · · · · · · · · · | : | | | | 1 : | • | | | | • | е ' | | | | 1 | - | | | | - ' : | | ٠, | | | | · - | 01/18/00 | | | , = = = ====== | | | | | | 45/L | 0111000 | Location Collected: MacDermid Inc., 526 Huntingdon Ave., Waterbury, CT → Date Sample Collected: 01/13/00 Sample Description: 010 - Equip. Blank EAS Project Number: 00010195 EAS Sample Number: 00010195-02 Date Sample Received: 01/13/00 | | | Detection | • | A a 1ai- | |---------------------------|------|-----------|-------|------------------| | Parameter | Data | Limit | Units | Analysis
Date | | 4-Methyl-2-Pentanone | BDL | 0.50 | ug/L | 01/18/00 | | Tetrachloroethylene | BDL | 0.50 | ug/L | 01/18/00 | | Methylene Chloride | BDL | 0.50 | ug/L | 01/18/00 | | Toluene | BDL |
0.50 | ug/L | 01/18/00 | | Trans-1,2-Dichloroethene | BDL | 0.50 | ug/L | 01/18/00 | | 1.1.1-Trichloroethane | BDL | 0.50 | ug/L | 01/18/00 | | MTBE | BDL | 0.50 | ug/L | 01/18/00 | | 1,1-Dichloroethane | BDL | 0.50 | ug/L | 01/18/00 | | Trichlorofluoromethane | BDL | 0.50 | ug/L | 01/18/00 | | Trichloroethylene | BDL | 0.50 | ug/L | 01/18/00 | | 2-Butanone | BDL. | 5.0 | ug/L | 01/18/00 | | Xylene | BDL | U.50 | ug/L | 01/18/00 | | cis-1,2-Dichloroethene | BDL | 0.50 | ug/L | 01/18/00 | | 2,2-Dichloropropane | BDL | 0.50 | ug/L | 01/18/00 | | Chloroform | BDL | 0.50 | ug/I, | 01/18/00 | | Bromochloromethane | BDL | 0.50 | ug/L | 01/18/00 | | 1,1,1-Trichloroethane | BDL | 0.50 | ug/L | 01/18/00 | | 1,1-Dichloropropene | BDL | 0.50 | ug/L | 01/18/00 | | 1,2-Dichloroethane | BDI. | 0.50 | ug/L | 01/18/00 | | Carbon Tetrachloride | BDL | 0.50 | ug/L | 01/18/00 | | Benzene | BDL | 0.50 | ug/L | 01/18/00 | | Trichloroethene | BDL | 0.50 | ug/L | 01/18/00 | | 1,2-Dichloropropane | BDI. | 0.50 | ug/L | 01/18/00 | | Dibromomethane | BOL | 0.50 | ng/L | 01/18/00 | | Bromodichloromethane | BDL | 0.50 | ug/L | 01/18/00 | | 4-Methyl-2-Pentanone | BDL | 5.0 | ug/L | 01/18/00 | | cis-1,3-Dichloropropene | BDL | 0.50 | ug/I | 01/18/00 | | Toluene | BDL | 0.50 | ug/l. | 01/18/00 | | Trans-1,3-Dichloropropene | BDL | 0.50 | ug/L | 01/18/00 | | 1,1,2-Trichloroethane | BDL | 0.50 | ug/L | 01/18/00 | | 2-Hexanone | BDL | 5.0 | ug/L | 01/18/00 | | 1,3-Dichloropropane | BDL | 0.50 | jug/L | 01/18/00 | | Dibromochloromethane | BDL | 0.50 | ug/L | 01/18/00 | | Tetrachoroethylene | BDL | 0.50 | ug/L | 01/18/00 | | 1,2-Dibromoethane | BDL | 0.50 | ug/L | 01/18/00 | | Chlorobenzene | BDL | 0.50 | ug/L | 01/18/00 | Location Collected: MacDermid Inc., 526 Huntingdon Ave., Waterhury, CT Date Sample Collected: 01/13/00 Sample Description: 010 - Equip. Blank EAS Project Number: 00010195 EAS Sample Number: 00010195-02 Date Sample Received: 01/13/00 | | | Detection | | Analysis | |-----------------------------|------|-----------|-------|----------| | Parameter | Data | Limit . | Units | Date | | 1,1,1,2-Tetrachloroethane | BDL | 0.50 | ug/L | 01/18/00 | | Ethylbenzene | BDL | 0.50 | ug/L | 01/18/00 | | m/p-Xylene | BDL | 0.50 | ug/L | 01/18/00 | | Styrene | BDL | 0.50 | ug/L | 01/18/00 | | 0-Xylene | BDL | 0.50 | ug/l | 01/18/00 | | Bromoform | BDL. | 0.50 | ug/L | 01/18/00 | | 1,1,2,2-Tetrachloroethane | BDL | 0 5 0 | ug/L | 01/18/00 | | Isopropylbenzene | BDI. | 0.50 | ug/L | 01/18/00 | | 1,2,3-Trichloropropane | BDL | 0.50 | ug/L | 01/18/00 | | Bromobenzene | BDL | 0.50 | ug/L | 01/18/00 | | n-Propylbenzene | BDL | 0.50 | ug/L | 01/18/00 | | 2-Chlorotoluene | BDL | 0.50 | ug/L | 01/18/00 | | 4-Chlorotoluene | BDL | 0.50 | ug/L | 01/18/00 | | 1,3,5-Trimethylbenzene | BDI. | 0.50 | ug/L | 01/18/00 | | tert-Butylbenzene | BDL | 0.50 | ug/L | 01/18/00 | | 1,2,4-Trimethylbenzene | BDL | 0.50 | ug/l. | 01/18/00 | | sec-Butylbenzene | BDL | 0.50 | ug/L | 01/18/00 | | 1,3-Dichlorobenzene | BDL | 0.50 | ug/L | 01/18/00 | | 1,4-Dichlorobenzene | BDL | 0.50 | ug/L | 01/18/00 | | p-Isopropyltoluene | BDL | 0.50 | ug/L | 01/18/00 | | 1,2-Dichlorobenzene | BDL | 0.50 | ug/L | 01/18/00 | | n-Butylbenzene | BDL | 0.50 | ug/L | 01/18/00 | | 1,2-Dibromo-3-Chloropropane | BDL | 0.50 | ug/L | 01/18/00 | | 1,2,4-Trichlorobenzene | BDL | 0.50 | ug/L | 01/18/00 | | Napthalene | BDL | 0.50 | Llgu. | 01/18/00 | | Hexachlorobutadiene | BDL | 0.50 | ug/L | 01/18/00 | | 1,2,3-Trichlorobenzene | BDL | 0.50 | ug/L | 01/18/00 | Location Collected: MacDermid Inc., 526 Huntingdon Ave., Waterbury, CT Date Sample Collected: 01/13/00 Sample Description: 011 - Trip Blank EAS Project Number: 00010195 EAS Sample Number: 00010195-03 Date Sample Received: 01/13/00 | | | Detection | . . | Analysis | |-----------------------------------|-----------|-----------|------------|----------| | Parameter | Data | Limit | Units | Date | | Cyanide, Water | BDL | 0.010 | mg/L | 01/25/00 | | Sulfide, Water | BDL | 10 | mg/L | 01/21/00 | | Arsenic, Water | BDL | 0.10 | mg/L | 01/20/00 | | Barium, Water | BDL | 0.0050 | mg/L | 01/19/00 | | Cadmium, Water | BDI. | 0.0050 | mg/L | 01/19/00 | | Chromium, Water | BDL | 0.020 | mg/L | 01/19/00 | | Copper, Water | BDL | 0.010 | mg/l. | 01/19/00 | | Lead, Water | BDL | 0.050 | mg/L | 01/19/00 | | Metals Digestion for 200.7, Water | Completed | | Ü | 01/18/00 | | Nickel, Water | BDL | 0.020 | mg/L | 01/19/00 | | Tin, Water | BDL | 0.010 | mg/L | 01/19/00 | | Zinc, Water | 0.017 | 0.010 | mg/L | 01/19/00 | | BNA Extraction, Water | Completed | | , | 01/20/00 | | Method 8270, Water | • | | • | | | Bis (2-ethylhexyl) phthalate | BDL | 10 | ug/L | 02/02/00 | | Butyl benzylphthalate | BDL | 10 | ug/L | 02/02/00 | | Di-n-butylphthalate | BDL | 10 | ug/L | 02/02/00 | | Di-n-octylphthalate | BDL | 10 | ug/[. | 02/02/00 | | Benzyl Alcohol | BDL | 10 | ug/L | 02/02/00 | | Volatile Organic Compounds, Water | | | β. ~ | 02/02/00 | | Volatile Organic Compounds, Water | | į ; | | • | | Acetone | 6.4 | 0.50 | ug/L | 01/18/00 | | Dichlorofluoromethane | BDL | 0.50 | ug/L | 01/18/00 | | 2-Butanone | BDL | 0.50 | ug/L | 01/18/00 | | Chloromethane | BDL | 0.50 | ug/L | 01/18/00 | | Chlorobenzene | BDL | 0.50 | ug/L | 01/18/00 | | Vinyl Chloride | BDL | 0.50 | ug/L | 01/18/00 | | Bromomethane | BDL | 0.50 | ug/L. | 01/18/00 | | 1,4-Dioxane | BDL | 0.50 | ug/L | 01/18/00 | | Chloroethane | BDL | 0.50 | ug/L | 01/18/00 | | Ethyl Benzene | BDL | 0.50 | ug/L | 01/18/00 | | Isobutanol | BDL | 0.50 | ug/L | 01/18/00 | | Trichlorofluoromethane | BDL | 0.50 | ug/L. | 01/18/00 | | Acetone | 6.4 | 5.0 | ug/L | 01/18/00 | | Methylene Chloride | BDL | 0.50 | ug/L | 01/18/00 | | 1,1-Dichloroethene | BDL | 0.50 | ug/L | 01/18/00 | Location Collected: MacDermid Inc., 526 Huntingdon Ave., Waterbury, CT Date Sample Collected: 01/13/00 Sample Description: 011 - Trip Blank EAS Project Number: 00010195 EAS Sample Number: 00010195 03 Date Sample Received: 01/13/00 | | | | 1 ' ' | | | |---------------------------|-----|----------------|-----------|----------------------|----------| | | : | | Detection | | Analysis | | <u>Parameter</u> | • | Data | Limit | Units | Date | | 4-Methyl-2-Pentanone | | BDL | 0.50 | ug/L | 01/18/00 | | Methylene Chloride | | BDL | 0.50 | ug/I, | 01/18/00 | | Tetrachloroethylene | ř | BDL | 0.50 | ug/L | 01/18/00 | | Toluene | • | BDL | 0.50 | ug/I, | 01/18/00 | | Trans-1,2-Dichloroethene | | BDL | 0.50 | ug/L | 01/18/00 | | MTBE | 4 | BDL. | 0.50 | ug/L | 01/18/00 | | 1,1,1 Trichloroethane | | BDL | 0.50 | ug/L | 01/18/00 | | 1,1-Dichloroethane | . ' | BDL | 0.50 | ug/L | 01/18/00 | | Trichlorofluoromethane | | \mathtt{BDL} | 0.50 | ug/L | 01/18/00 | | 2-Butanone | | BDL | 5.0 | ug/L | 01/18/00 | | Trichloroethylene | | BDL | 0.50 | ug/L | 01/18/00 | | cis-1,2-Dichloroethene | • | BDL | 0.50 | ug/L | 01/18/00 | | Xylene | | BDL | 0.50 | ug/L | 01/18/00 | | 2,2-Dichloropropane | | BDL | 0.50 | ug/L | 01/18/00 | | Chloroform | | BDL | 0.50 | ug/L | 01/18/00 | | Bromochloromethane | | BDL | 0.50 | ug/L | 01/18/00 | | 1,1,1-Trichloroethane | | BDL | 0.50 | ug/L | 01/18/00 | | 1,1-Dichloropropene | | BDL | 0.50 | ug/L | 01/18/00 | | 1,2-Dichloroethane | | BDL | 0.50 | ug/L | 01/18/00 | | Carbon Tetrachloride | | BDL | 0.50 | ug/L | 01/18/00 | | Benzene | | BDL | 0.50 | ug/L | 01/18/00 | | Trichloroethene | | BDL | 0.50 | ug/L | 01/18/00 | | 1,2-Dichloropropane | | BDL | 0.50 | ug/L | 01/18/00 | | Dibromomethane | | BDL | 0.50 | ug/L | 01/18/00 | | Bromodichloromethane | | BDL | 0.50 | ug/L | 01/18/00 | | 4-Methyl-2-Pentanone | | BDL | 5.0 | ug/L | 01/18/00 | | cis-1,3-Dichloropropene | | BDL | 0.50 | ug/L | 01/18/00 | | Toluene | . : | BDL | 0.50 | ug/L | 01/18/00 | | Trans 1,3-Dichloropropene | | BDL. | 0.50 | ug/L | 01/18/00 | | 1,1,2-Trichloroethane | | BDL | 0.50 | ug/L | 01/18/00 | | 2-Hexanone | | BDL | 5.0 | ug/L | 01/18/00 | | 1,3-Dichloropropane | | BDL | 0.50 | ug/L | 01/18/00 | | Dibromochloromethane | | BDL | 0.50 | ug/L | 01/18/00 | | Tetrachoroethylene | | BDL | 0.50 | ug/L | 01/18/00 | | 1,2-Dibromoethane | | BDL | 0.50 | ug/L | 01/18/00 | | Chlorobenzene | | BDL | 0.50 | ug/L | 01/18/00 | | | | | | ~ 5, ~ | 01,10,00 | Location Collected: MacDermid Inc., 526 Huntingdon Ave., Waterbury, CT Date Sample Collected: 01/13/00 Sample Description: 011 - Trip Blank EAS Project Number: 00010195 EAS Sample Number: 00010195-03 Date Sample Received: 01/13/00 | | Detection | | Analysis | |----------------|---|---------------|------------| | Data | Limit | Units | Date | | BDI. | 0.50 | ug/L | 01/18/00 | | BDL | 0.50 | ug/L | 01/18/00 | | BDL | 0.50 | ug/L | 01/18/00 | | BDL | 0.50 | ug/L | 01/18/00 | | BDL | 0.50 | ug/L | 01/18/00 | | BDL | 0.50 | ug/L | 01/18/00 | | BDL | 0.50 | ug/L | 01/18/00 | | BDL | 0.50 | ug/L | 01/18/00 | | BDL | 0.50 | ug/L | 01/18/00 | | BDL | 0.50 | ug/L | 01/18/00 | | BDL | 0.50 | ug/I. | 01/18/00 | | BDL | 0.50 | ug/L | 01/18/00 | | BDL | 0.50 | ug/L | 01/18/00 | | BDL | 0.50 | ug/L | 01/18/00 | | BDL | 0.50 | ug/L | 01/18/00 | | BDL | 0.50 | ug/I. | 01/18/00 | | \mathtt{BDL} | 0.50 | ug/L | 01/18/00 | | BDL | 0.50 | ug/L | 01/18/00 | | \mathtt{BDL} | 0.50 | ug/L | 01/18/00 | | BDL | 0.5ψ | ug/L | 01/18/00 | | BDL | 0.50 | ug/L | 01/18/00 - | | BDL | 0.50 | ug/L | 01/18/00 | | BDL | 0.50 | ug/L | 01/18/00 | | BDL | 0.50 | ug/L | 01/18/00 | | BDL | 0.50 | ug/L | 01/18/00 | | BDL | 0.50 | ug/L | 01/18/00 | | BDL | 0.50 | ug/L | 01/18/00 | | | BDL | Data Ilimit | Data | Location Collected: MacDermid Inc., 526 Huntingdon Avc., Waterbury, CT Date Sample Collected: 01/13/00 Sample Description: 012 - 2nd Slab EAS Project Number: 00010195 EAS Sample Number: 00010195-04 Date Sample Received: 01/13/00 | | | T. | • | | |--------------------------------------|--------------|-----------|--------|----------| | | | Detection | | Analysis | | Parameter | Data | Limit | Units | Date | |
Cyanide, Solid | BDL | 5.0 | πιγ/kg | 01/24/00 | | Percent Solids, Solid | 97.2 | 1.0 | % | 01/20/00 | | Sulfide Total, Solid | 17 | 10 | mg/kg | 01/21/00 | | Barium, Leachable | 0.018 | 0.0050 | mg/L | 01/24/00 | | Barium, Solid | ' 8.0 | 0.10 | mg/kg | 01/19/00 | | Cadmium, Leachable | 0.013 | 0.010 | mg/L | 01/24/00 | | Cadmium, Solid | 76 | 0.10 | mg/kg | 01/19/00 | | Chromium, Leachable | BDL | 0.020 | mg/L | 01/24/00 | | Chromium, Solid | 1800 | 0.40 | mg/kg | 01/19/00 | | Copper, Leachable | 0.052 | 0 0 10 | mg/L | 01/24/00 | | Copper, Solid | 1300 | 0.20 | mg/kg | 01/19/00 | | Lead, Leachable | BDL | 0.050 | mg/l. | 01/24/00 | | Lead, Solid | 90 | 1.0 | mg/kg | 01/19/00 | | Metals Digestion for 6010B, Leachate | Completed | į į | | 01/21/00 | | Metals Digestion for 6010B, Solid | Completed | | | 01/18/00 | | Nickel, Leachable | 0.55 | 0.020 | mg/L | 01/24/00 | | Nickel, Solid | 360 | 0.40 | mg/kg | 01/19/00 | | Tin, Leachable | 0.08 | 0.010 | mg/L | 01/24/00 | | Tin, Solid | 890 | 0.20 | mg/kg | 01/19/00 | | Zinc, Leachable | 0.037 | 0.0050 | mg/L | 01/24/00 | | Zinc, Solid | 61 | 0.10 | mg/kg | 01/19/00 | | BNA Extraction, Solid | Completed | , | | 01/27/00 | | EP Toxicity Leaching Procedure | Completed | ! | | 01/19/00 | | Method 8270, Solid | • | . : | • | | | Bis (2-ethylhexyl) phthalate | BDL | 330 | ug/kg | 01/29/00 | | Butyl benzylphthalate | BDL | 330 | ng/kg | 01/29/00 | | Di-n-butylphthalate | BDL | 330 | ug/kg | 01/29/00 | | Di-n-octylphthalate | BDL | 330 | ug/kg | 01/29/00 | | Benzyl Alcohol | BDL | 330 | ag/kg | 01/29/00 | | Volatile Organic Compounds, Solid | | | | | | Acetone | 95 | 25 | ug/kg | 01/27/00 | | 2 Butanone | 25 | 10 | ug/kg | 01/27/00 | | Chlorobenzene | BDL | 10 | ug/kg | 01/27/00 | | 1,4-Dioxane | BDL | 100 | ug/kg | 01/27/00 | | Ethyl Benzene | BUL | 10 | ug/kg | 01/27/00 | | Isobutanol | BDL | 10 | ug/kg | 01/27/00 | | ADOD & DELLIOI | ., | | V5148 | 01/2//00 | Location Collected: MacDermid Inc., 526 Huntingdon Ave., Waterbury, CT Date Sample Collected: 01/13/00 Sample Description: 012 - 2nd Slab EAS Project Number: 00010195 EAS Sample Number: 00010195-04 Date Sample Received: 01/13/00 | | • | Detection | | Analysis | |------------------------|------|-----------|-------|----------| | Parameter | Data | Limit | Units | Date | | Methylene Chloride | 12 | 10 | ug/kg | 01/27/00 | | 4-Methyl-2-Pentanone | BDL | 10 | ug/kg | 01/27/00 | | Tetrachloroethylene | BDL | 10 | ug/kg | 01/27/00 | | Toluene | BDI. | 10 | ug/kg | 01/27/00 | | 1,1,1-Trichloroethane | BDL | 10 | ug/kg | 01/27/00 | | Trichlorofluoromethane | BDL | 10 | ug/kg | 01/27/00 | | Trichloroethylene | . 11 | 10 | ug/kg | 01/27/00 | | Xylene | BDL | 10 ¦ | ug/kg | 01/27/00 | Location Collected: MacDermid Inc., 526 Huntingdon Ave., Waterbury, CT Date Sample Collected: 01/13/00 Sample Description: 013 - NMP 1 EAS Project Number: 00010195 EAS Sample Number: 00010195-05 Date Sample Received: 01/13/00 | | | i | | | |--------------------------------------|-----------|---------------------------------------|-------------|-------------| | | | Detection | | · Analysis | | Parameter | Data | Limit | Units | <u>Date</u> | | Cyanide, Solid | BDL | 5.0 | mg/kg | 01/24/00 | | Percent Solids, Solid | 95.6° | 1.0 | % | 01/20/00 | | Sulfide-Total, Solid | BDL | 10 | mg/kg | 01/21/00 | | Arsenic, Leachable | BDL | 0.10 | mg/L | 01/25/00 | | Arsenic, Solid | BDL | 2.0 | mg/kg | 01/19/00 | | Barium, Leachable | 0.48 | 0.0050 | mg/L | 01/24/00 | | Barium, Solid | 57 | 0.10 | mg/kg | 01/19/00 | | Cadmium, Leachable | BDL. | 0.010 | mg/L | 01/24/00 | | Cadmium, Solid | 3.1 | 0.10 | mg/kg | 01/19/00 | | Chromium, Leachable | 0.64 | 0.020 | mg/L | 01/24/00 | | Chromium, Solid | 51 | 0.40 | mg/kg | 01/19/00 | | Copper, Leachable | 1.1 | 0.010 | mg/L | 01/24/00 | | Copper, Solid | 150 | 0.20 | mg/kg | 01/19/00 | | Lead, Leachable | 0.062 | 0.050 | mg/L | 01/24/00 | | Lead, Solid | 45 | 1.0 | mg/kg | 01/19/00 | | Metals Digestion for 6010B, Leachate | Completed | | 0 8 | 01/21/00 | | Metals Digestion for 6010B, Solid | Completed | | • | 01/18/00 | | Nickel, Leachable | 0.56 | 0.020 | mg/L | 01/24/00 | | Nickel, Solid | 44 | 0.40 | una∖ka | 01/19/00 | | Tin, Leachable | 0.029 | 0.010 | mg/l. | 01/24/00 | | Tin, Solid | 95 | 0.20 | mg/kg | 01/19/00 | | Zinc, Leachable | 8.6 | 0.0050 | mg/L | 01/24/00 | | Zinc, Solid | 570 | 0.10 | mg/kg | 01/19/00 | | BNA Extraction, Solid | Completed | . i | | 01/27/00 | | EP Toxicity Leaching Procedure | Completed | | | 01/19/00 | | Method 8270, Solid | | | | • | | Bis (2-ethylhexyl) phthalate | 4700 | 330 | ug/kg | 01/31/00 | | Benzyl Alcohol | BDL | 330 | ng/kg | 01/31/00 | | Volatile Organic Compounds, Solid | , | i | 3 ., | | | Acetone | 63 | 25 | ug∕kg | 01/27/00 | | 2-Butanone | BDL | 10 i | ug/kg | 01/27/00 | | Chlorobenzene | BDL | 10; | ug/kg | 01/27/00 | | Ethyl Benzene | BDL | 10 | ug/kg | 01/27/00 | | Isobutanol | BDL | 10 | ug/kg | 01/27/00 | | Methylene Chloride | BDL | 10 | ug/kg | 01/27/00 | | Tetrachloroethylene | BDL | 10 | ug/kg | 01/27/00 | | | | · · · · · · · · · · · · · · · · · · · | | | Location Collected: MacDermid Inc., 526 Huntingdon Ave., Waterbury, CT Date Sample Collected: 01/13/00 Sample Description: 013 - NMP 1 EAS Project Number: 00010195 EAS Sample Number: 00010195-05 Date Sample Received: 01/13/00 | | • | Detection | • | Analysis | |------------------------|------|-----------|-------|----------| | Parameter | Data | Limit | Units | Date | | Toluene | BDL | 10 | ug/kg | 01/27/00 | | 1,1,1-Trichloroethane | BDL | 10 | ng/kg | 01/27/00 | | Trichlorofluoromethane | BDL | 10 | ug/kg | 01/27/00 | | Trichloroethylene | BDL | 10 ! | ug/kg | 01/27/00 | | Xylene | BDL | 10 | ug/kg | 01/27/00 | Location Collected: MacDermid Inc., 526 Huntingdon Ave., Waterbury. CT Date Sample Collected: 01/13/00 Sample Description: 013 - NMP 2 EAS Project Number: 00010195. EAS Sample Number: 00010195-06 Date Sample Received: 01/13/00 | Parameter | Data | Detection
Limit | :
TT-24- | Analysia | |--|----------------|--------------------|-------------|----------| | | | | Units | Date | | Cyanide, Solid | BDL | 5.0 | mg/kg | 01/24/00 | | Percent Solids, Solid Sulfide-Total, Solid | 95.6
10 | 1.0 | % | 01/20/00 | | | 10 | 10 | mg/kg | 01/21/00 | | Arsenic, Leachable | BDI. | 0.10 | mg/L | 01/25/00 | | Arsenic, Solid | BDL | 2.0 | mg/kg | 01/19/00 | | Barium, Leachable | 0.58 | 0.0050 | mg/L | 01/24/00 | | Barium, Solid | 81 | 0.10 | mg/kg | 01/19/00 | | Cadmium, Leachable | BDL | 0.010 | mg/L | 01/24/00 | | Cadmium, Solid | 4.4 | 0.10 | mg/kg | 01/19/00 | | Chromium, Leachable | 0.68 | 0.020 | നഴ് । | 01/24/00 | | Chromium, Solid | 8.6 | 0.40 | mg/kg | 01/19/00 | | Copper, Leachable | 0.92 | 0.010 | mg/L | 01/24/00 | | Copper, Solid | 170 | 0.20 | mg/kg | 01/19/00 | | Lead, Leachable | \mathtt{BDL} | 0.050 | mg/L | 01/24/00 | | Lead, Solid | 64 | 1.0 | mg/kg | 01/19/00 | | Metals Digestion for 6010B, Leachate | Completed | | • | 01/21/00 | | Metals Digestion for 6010B, Solid | Completed | - | | 01/18/00 | | Nickel, Leachable | 0.44 | 0.020 | mg/L | 01/24/00 | | Nickel, Solid | 47 | 0.40 | mg/kg | 01/19/00 | | Tin, Leachable | 0.066 | 0.010 | mg/L | 01/24/00 | | Tin, Solid | 180 | 0.20 | mg∕kg | 01/19/00 | | Zinc, Leachable | · 7.3 | 0.0050 | mg/L | 01/24/00 | | Zinc, Solid | 510 | 0.10 | mg/kg | 01/19/00 | | BNA Extraction, Solid | Completed | | | 01/27/00 | | EP Toxicity Leaching Procedure | Completed | | • | 01/19/00 | | Method 8270, Solid | | | | | | Bis (2-ethylhexyl) phthalate | 1200 | 330 | ug/kg | 01/29/00 | | Benzyl Alcohol | BDL | 330 | ug/kg | 01/29/00 | | Volatile Organic Compounds, Solid | | | | | | Acetone | 36 | 25 | ug/kg | 01/27/00 | | 2-Butanone | BDL | 10 | ug/kg | 01/27/00 | | Chlorobenzene | BDL | 10 | ug/kg | 01/27/00 | | Ethyl Benzene | BDL | 10 | ug/kg | 01/27/00 | | Isobutanol | BDL | 10 | ug/kg | 01/27/00 | | Methylene Chloride | BDL | 10 | ug/kg | 01/27/00 | | Tetrachloroethylene | BDL | 10 | ug/kg | 01/27/00 | | | | | ~~~~~ | 01/2//00 | Location Collected: MacDermid Inc., 526 Huntingdon Ave., Waterbury, CT Date Sample Collected: 01/13/00 Sample Description: 013 - NMP 2 EAS Project Number: 00010195 EAS Sample Number: 00010195 06 Date Sample Received: 01/13/00: | Parameter | | Data | Detection
Limit | Units | Analysis
Date | |------------------------|---|------|--------------------|-------|------------------| | Toluene | | BDL | 10 | ug/kg | 01/27/00 | | 1,1,1-Trichloroethane | | BDL | 10 | ug/kg | 01/27/00 | | Trichlorofluoromethane | ; | BDL | 10 | ug/kg | 01/27/00 | | Trichloroethylene | | BDL | 10: | ug/kg | 01/27/00 | | Xylene | | BDI. | 10' | ug/kg | 01/27/00 | Location Collected: MacDermid Inc., 526 Huntingdon Ave., Waterbury, CT Date Sample Collected: 01/13/00 Sample Description: 005 - Flam. Stor. EAS Project Number: 00010195 EAS Sample Number: 00010195-07 Date Sample Received: 01/13/00 | | | | Detection | | Analysis | |--------------------------------------|-------|-----------|-----------|-------|----------| | Parameter | * | Data | Limit | Units | Date | | Cyanide, Solid | | BDL | 5.0 | mg/kg | 01/24/00 | | Percent Solids, Solid | | 95.4 | 1.0 | % | 01/20/00 | | Sulfide-Total, Solid | | BDL | 10 | mg/kg | 01/21/00 | | Barium, Leachable | | 0.26 | 0.0050 | mg/L | 01/24/00 | | Barium, Solid | | 99 | 0.10 | mg/kg | 01/18/00 | | Cadmium, Leachable | | BDL | 0.010 | mg/L | 01/24/00 | | Cadmium, Solid | | 5.0 | 0.10 | mg/kg | 01/18/00 | | Chromium, Leachable | • | 0.033 | 0.020 | mg/L | 01/24/00 | | Chromium, Solid | | 55 | 0.40 | mg/kg | 01/18/00 | | Copper, Leachable | | 0.18 | 0.010 | mg/L | 01/24/00 | | Copper, Solid | | 150 | 0.20 | mg/kg | 01/18/00 | | Lead, Leachable | | BDL | 0.050 | ing/L | 01/24/00 | | Lead. Solid | | 43 | 1.0 | mg/kg | 01/18/00 | | Metals Digestion for 6010B, Leachate | | Completed | | : | 01/21/00 | | Metals Digestion for 6010B, Solid | | Completed | | | 01/17/00 | |
Nickel, Leachable | | 0.40 | 0.020 | mg/L | 01/24/00 | | Nickel, Solid | | 50 | 0.40 | mg/kg | 01/18/00 | | Tin, Leachable | | 0.016 | 0.010 | mg/L | 01/24/00 | | Tin, Solid | | 20 | 0.20 | mg/kg | 01/18/00 | | Zinc, Leachable | • | 2.5 | 0.0ψ50 | mg/L | 01/24/00 | | Zinc, Solid | | 470 | 0.10 | mg/kg | 01/18/00 | | BNA Extraction, Solid | | Completed | | • | 01/27/00 | | EP Toxicity Leaching Procedure | • | Completed | į | i | 01/19/00 | | Method 8270, Solid | | | | • | . • | | Bis (2-ethylhexyl) phthalate | | 2300 | 330 | ug∕kg | 01/31/00 | | Di-n-butylphthalate | | 52000 | 330 | ug/kg | 01/31/00 | | Volatile Organic Compounds, Solid | | | | • | | | Acetone | | 90 | 25 | ug/kg | 01/27/00 | | 2-Butanone | | BDL | 10 | ug/kg | 01/27/00 | | Chlorobenzene | | BDL | 10 | ug/kg | 01/27/00 | | 1,4-Dioxane | | BDL | 100 | ug/kg | 01/27/00 | | Ethyl Benzene | ! | 2000 | 10 | ug/kg | 01/27/00 | | Isobutanol | : | BDL | 10 | ug/kg | 01/27/00 | | Methylene Chloride | : | 13 | 10 | ug/kg | 01/27/00 | | 4-Methyl-2-Pentanone | | BDL | 10 | ug/kg | 01/27/00 | | Tetrachloroethylene | , (. | 1,400 | 10 | ug/kr | 01/27/00 | | BDL = Below Detection Limit | | | | | | | | | | l . | • | | Location Collected: MacDermid Inc., 526 Huntingdon Ave., Waterbury, CT ✓ Date Sample Collected: 01/13/00 Sample Description: 005 - Flam, Stor. EAS Project Number: 00010195 EAS Sample Number: 00010195-07 Date Sample Received: 01/13/00 | Parameter | Data | Detection Limit |)
Units | Analysis Date | |------------------------|-------|-----------------|------------|----------------| | Toluene | 3000 | 10 | ug/kg | 01/27/00 | | 1,1,1-Trichloroethane | BDL | 1.0 | ug/kg | 01/27/00 | | Trichlorofluoromethane | BDL | 10 | ug/kg | 01/27/00 | | Trichloroethylene - | 120 | 10 | ug/kg | 01/27/00 | | Xylene | 14000 | 10 | ug/kg | 01/27/00 | Location Collected: MacDermid Inc., 526 Huntingdon Ave., Waterbury, CT Date Sample Collected: 01/13/00 Sample Description: 006 - Flam. Stor. EAS Project Number: 00010195 EAS Sample Number: 00010195-08 Date Sample Received: 01/13/00 | Parameter | | Data | Detection,
Limit | ·
Units | Analysis
Date | |--------------------------------------|-----------------------|-----------|---------------------|--------------|------------------| | Cyanide, Solid | | BDL | 5.0 | mg/kg | 01/24/00 | | Percent Solids, Solid | | 95.5 | 1.0 | %
% | 01/20/00 | | Sulfide-Total, Solid | | BDL | 10 | mg/kr | 01/21/00 | | Barium, Leachable | * | 0.31 | 0.0050 | mg/L | 01/24/00 | | Barium, Solid | | 90 | 0.10 | mg/kg | 01/18/00 | | Cadmium, Leachable | | BDL | 0.010 | ing/]_ | 01/24/00 | | Cadmium, Solid | | 4.6 | 0.10 | mg/kg | 01/18/00 | | Chromium, Leachable | 0.05 | 0.05 | 0.020 | mg/L | 01/24/00 | | Chromium, Solid | <i>V</i> . <i>V</i>) | 56 | 0.40 | mg/kg | 01/18/00 | | Copper, Leachable | | 0.41 | 0.010 | mg/L | 01/24/00 | | Copper, Solid | | 170 | 0.20 | mg/kg | 01/18/00 | | Lead, Leachable | | BDL | 0.050 | mg/L | 01/24/00 | | Lead, Solid | | 44 | 1.0 | प्रश्रीप्राच | 01/18/00 | | Metals Digestion for 6010B, Leachate | | Completed | | 7.65.7.6 | 01/21/00 | | Metals Digestion for 6010B, Solid | | Completed | • | i | 01/17/00 | | Nickel, Leachable | | 0.49 | 0.020 | mg/L | 01/24/00 | | Nickel, Solid | | 53 | 0.40 | mg/kg | 01/24/00 | | Tin, Leachable | | 0.042 | 0.010 | $m^{k}I'$ | 01/13/00 | | Tin, Solid | | 110 | 0.20 | mg/kg | 01/18/00 | | Zinc, Leachable | | 3.9 | 0.0050 | mg/L | 01/24/00 | | Zinc, Solid | | 500 | 0.10 | mg/kg | 01/18/00 | | BNA Extraction, Solid | • | Completed | • | - %& | 01/27/00 | | EP Toxicity Leaching Procedure | | Completed | | • | 01/19/00 | | Method 8270, Solid | | - | • | | | | Bis (2-ethylhexyl) phthalate | | 830 | 330 | ug/kg | 01/31/00 | | Di-n-butylphthalate | | 61000 | 330 | ug/kg | 01/31/00 | | Volatile Organic Compounds, Solid | | | | 10 1 | <u> </u> | | Acetone | | 150 | 25 | ug/kg | 01/27/00 | | 2-Butanone | • | 200 | 10 | ug/kg | 01/27/00 | | Chlorobenzene | | BDL | 10 | ug/kg | 01/27/00 | | 1,4-Dioxane | | 290 | 100 | ug/kg | 01/27/00 | | Ethyl Benzene | | 950 | 10 | ug/kg | 01/27/00 | | Isobutanol | • | BDL | 10 | ug/kg | 01/27/00 | | Methylene Chloride | | BDL. | 10 | ug/kg | 01/27/00 | | 4-Methyl-2-Pentanone | | BDI. | 100 | ug/kg | 01/27/00 | | Tetrachloroethylene | • | 23 | 10 | ug/kg | 01/27/00 | マミジンティンシンエし HRP Associates, Inc. Location Collected: MacDermid Inc., 526 Huntingdon Ave., Waterbury, CT Date Sample Collected: 01/13/00 Sample Description: 006 - Flam. Stor. EAS Project Number: 00010195 EAS Sample Number: 00010195-08 Date Sample Received: 01/13/00 | Parameter | Data | Detection
Limit | Units | Analysis
Date | |------------------------|----------------|--------------------|-------|------------------| | Toluene | 99 | 10 | л≨∖кё | 01/27/00 | | 1,1,1-Trichloroethane | BDL | 10 | ug/kg | 01/27/00 | | Trichlorofluoromethane | \mathtt{BDL} | 10 | ug/kg | 01/27/00 | | Trichloroethylene | 24 | 10 | ug/kg | 01/27/00 | | Xylene | 5900 | 10 | ug/kg | 01/27/00 | Location Collected: MacDermid Inc., 526 Huntingdon Ave., Waterbury, CT Date Sample Collected: 01/13/00 Sample Description: 007 - Flam Stor. EAS Project Number: 00010195 EAS Sample Number: 00010199-09 Date Sample Received: 01/13/00 | | * | | | | |--------------------------------------|-----------|--------------------|-------------|----------| | Parameter | Data | Detection
Limit | 111-24- | Analysis | | | | | Units | Date | | Cyanide, Solid | BDL | 5.0 | mg/kg | 01/24/00 | | Percent Solids, Solid | 94.3 | 1.0 | % | 01/20/00 | | Sulfide-Total, Solid | BDL | 10 | mg/kg | 01/21/00 | | Barium, Leachable | 0.27 | 0.0050 | ${ t mg/L}$ | 01/24/00 | | Barium, Solid | 69 | 0.10 | mg/kg | 01/18/00 | | Cadmium, Leachable | BDL | 0.010 | $_{ m L}$ | 01/24/00 | | Cadmium, Solid | 4.2 | 0.10 | 'mg/kg | 01/18/00 | | Chromium, Leachable | 0.27 | 0.020 | mg/L | 01/24/00 | | Chromium, Solid | 58 | 0.40 | mg/kg | 01/18/00 | | Copper, Leachable | 0 38 | 0.010 | mg/L | 01/24/00 | | Copper, Solid | 150 | 0.20 | mg/kg | 01/18/00 | | Lead, Leachable | BDL | 0.05d | mg/L | 01/24/00 | | Lead, Solid | 43 | 1.0 | mg/kg | 01/18/00 | | Metals Digestion for 6010B, Leachate | Completed | : | | 01/21/00 | | Metals Digestion for 6010B, Solid | Completed | | | 01/17/00 | | Nickel, Leachable | 0.48 | 0.020 | mg/L | 01/24/00 | | Nickel, Solid | -50 | 0.40 | mg/kg | 01/18/00 | | Tin, Leachable | BDL | 0.010 | mg/L | 01/24/00 | | Tin, Solid | 43 | 0.20 | mg/kg | 01/18/00 | | Zinc, Leachable | 3.8 | 0.0050 | mg/L | 01/24/00 | | Zinc, Solid | 480 | 0.10 | mg/kg | 01/18/00 | | BNA Extraction, Solid | Completed | | | 01/27/00 | | EP Toxicity Leaching Procedure | Completed | | • | 01/19/00 | | Method 8270, Solid | | | | | | Bis (2-ethylhexyl) phthalate | 370 | 330 | ug/kg | 01/31/00 | | Di-n-butylphthalate | 31000 | 330 | ug∕kg | 01/31/00 | | Volatile Organic Compounds, Solid | 200 | | | | | Acetone | 100 | 25 | ug/kg | 01/27/00 | | 2-Butanone | BDL | 10 | ug/kg | 01/27/00 | | Chlorobenzene | BDL | 10 | ng/kg | 01/27/00 | | 1,4-Dioxane | BDI. | 100 | ug/kg | 01/27/00 | | Ethyl Benzene | 1100 | 10 | ug/kg | 01/27/00 | | Isobutanol | BUL | 10 | ug/kg | 01/27/00 | | Methylene Chloride | BDL | 10 | ug/kg | 01/27/00 | | 4-Methyl-2-Pentanone | BDL | 10 | ug/kg | 01/27/00 | | Tetrachloroethylene | 13 | 10 | ug/kg | 01/27/00 | | | | | ''B' **9 | | Location Collected: MacDermid Inc., 526 Huntingdon Ave., Waterbury, CT Date Sample Collected: 01/13/00 Sample Description: 007 - Flam. Stor. EAS Project Number: 00010195 EAS Sample Number: 00010195-09 Date Sample Received: 01/13/00 | | | Detection | | Analysis | |------------------------|------|-----------|--------|----------| | Parameter | Data | Limit | Units | Date | | Toluene | 100 | 1.0 | ug/kg | 01/27/00 | | 1,1,1-Trichloroethane | BDL | 10 | ug/kg | 01/27/00 | | Trichlorofluoromethane | BDL | 10 | ug/kg | 01/27/00 | | Trichloroethylene | BDL | 10 | ug/kg | 01/27/00 | | Xylene | 7000 | 10 | .ug/kg | 01/27/00 | Location Collected: MacDermid Inc., 526 Huntingdon Ave., Waterbury, CT Date Sample Collected: 01/13/00 Sample Description: 008 - Flam. Stor. EAS Project Number: 00010195 EAS Sample Number: 00010195 10 Date Sample Received: 01/13/00 | Parameter | Data | Detection
Limit | Units | Analysis
Date | |--------------------------------------|-----------|--------------------|--------|------------------| | Cyanide, Solid | BDI. | 5.0 | mg/kg | 01/24/00 | | Percent Solids, Solid | 95.5 | 1.0 | . % | 01/20/00 | | Sulfide-Total, Solid | BDL | 10 | mg/kg | 01/21/00 | | Barium, Leachable | 0.30 | 0.0050 | mg/L | 01/24/00 | | Barium, Solid | 74 | 0.10 | mg/kg | 01/18/00 | | Cadmium, Leachable | BDL | 0.010 | mg/L | 01/24/00 | | Cadmium, Solid | 4.0 | 0.10 | mg/kg | 01/18/00 | | Chromium, Leachable | BDL | 0.020 | mg/L | 01/24/00 | | Chromium, Solid | 44 | 0.40 | mg/kg | 01/18/00 | | Copper, Leachable | 0.22 | 0.010 | mg/L | 01/24/00 | | Copper, Solid | 120 | 0.20 | mg/kg | 01/18/00 | | Lead, Leachable | BDL | 0.050 | mg/L | 01/24/00 | | Lead, Solid | 36 | 1.0 | mg/kg | 01/18/00 | | Metals Digestion for 6010B, Leachate | Completed | . ` | | 01/21/00 | | Metals Digestion for 6010B, Solid | Completed | | | 01/17/00 | | Nickel, Leachable | 0.44 | 0.020 | mg/L | 01/24/00 | | Nickel, Solid | 41 | 0.40 | zng/kg | 01/18/00 | | Tin, Leachable | 0.029 | 0.010 | ;mg/L | 01/24/00 | | Tin, Solid | 19 | 0.20 | mg/kg | 01/18/00 | | Zinc, Lenchable | 3.0 | 0.0050 | mg/L | 01/24/00 | | Zinc, Solid | 380 | 0.10 | mg/kg | 01/18/00 | | BNA Extraction, Solid | Completed | : | | 01/27/00 | | EP Toxicity Leaching Procedure | Completed | i | ; | 01/19/00 | | Method 8270, Solid | • | : | • | | | Bis (2-ethylhexyl) phthalate | 440 | 330 | ug/kg | 01/31/00 | | Di-n-butylphthalate | 27000 | 330 | ug/kg | 01/31/00 | | Volatile Organic Compounds, Solid | | | 0 0 | | | Acetone | 63 | 25 | ug/kg | 01/27/00 | | 2-Butanone | 47 | 10 | lug/kg | 01/27/00 | | Chlorobenzene | BDL | 10 | ug/kg | 01/27/00 | | 1,4-Dioxane | 360 | 100 | ug/kg |
01/27/00 | | Ethyl Benzene | 1100 | 10 | ug/kg | 01/27/00 | | Isobutanol | BDL | 10 | 'ug/kg | 01/27/00 | | Mcthylene Chloride | BDL | 10 | ug/kg | 01/27/00 | | 4-Methyl-2-Pentanone | BDL | 10 | ug/kg | 01/27/00 | | Tetrachloroethylene | 76 | 10 | ug/kg | 01/27/00 | Location Collected: MacDermid Inc., 526 Huntingdon Ave., Waterbury, CT Date Sample Collected: 01/13/00 Sample Description: 008 - Flam! Stor. EAS Project Number: 00010195 EAS Sample Number: 00010195-10 Date Sample Received: 01/13/00 | | • | • | Detection | | Analysis | |------------------------|----------|------|-----------|-------|----------| | Parameter | <u> </u> | Data | Limit | Units | Date | | Toluene | | 210 | 10 | ug/kg | 01/27/00 | | 1,1,1-Trichloroethane | ; | BDL | 10 | ug/kg | 01/27/00 | | Trichlorofluoromethane | | BDL | 10 | սց/ևբ | 01/27/00 | | Trichloroethylene | | BDL | 10 | ug/kg | 01/27/00 | | Xylene | } | 7700 | 10 | ug/kg | 01/27/00 | Location Collected: MacDermid Inc., 526 Huntingdon Avc., Waterbury, CT Date Sample Collected: 01/13/00 Sample Description: 009 - Flam Stor. EAS Project Number: 00010195 EAS Sample Number: 00010195-11 Date Sample Received: 01/13/00 | | | Detection | | Analysis | |--------------------------------------|-----------|-----------|-----------------|-------------| | Parameter | Data | Limit | Units | Date | | Cyanide, Solid | BDL | 5.0 | mg/kg | 01/24/00 | | Percent Solids, Solid | 95.4 | 1.0 | , mg/kg | 01/29/00 | | Sulfide-Total, Solid | BDL | 10 | mg/kg | 01/21/00 | | Barium, Leachable | 0.13 | 0.0050 | mg/L | 01/25/00 | | Barium, Solid | 71 | 0.10 | mg/kg | 01/18/00 | | Cadmium, Leachable | BDL | 0.010 | m8\[' | 01/25/00 | | Cadmium, Solid | 3.6 | 0.10 | mg/kg | 01/18/00 | | Chromium, Leachable | BDL | 0.020 | mg/L | 01/25/00 | | Chromium, Solid | 52 | 0.40 | mg/kg | 01/18/00 | | Copper, Leachable | 0.16 | 0.010 | mg/L | 01/25/00 | | Copper, Solid | 140 | 0.20 | mg/kg | 01/18/00 | | Lead, Leachable | BDL | 0.050 | mg/L | 01/25/00 | | Lead, Solid | 40 | 1.0 | mg/kg | 01/18/00 | | Metals Digestion for 6010B, Leachate | Completed | 1 | ********** | 01/24/00 | | Metals Digestion for 6010B, Solid | Completed | į . | | 01/17/00 | | Nickel, Leachable | 0.14 | 0.020 | mg/L | 01/25/00 | | Nickel, Solid | 48 | 0.40 | m8√rg
mev⊏.~ | 01/18/00 | | Tin, Leachable | 0.023 | 0.010 | mg/L | 01/25/00 | | Tin, Solid | 28 | 0.20 | mg/kg | 01/18/00 | | Zinc, Leachable | 1.3 | 0.0050 | mg∏. | 01/25/00 | | Zinc, Solid | 460 | 0.10 | mg/kg | 01/18/00 | | BNA Extraction, Solid | Completed | 1 | | 01/27/00 | | EP Toxicity Leaching Procedure | Completed | <u> </u> | • | 01/19/00 | | Method 8270, Solid | •
• | | | - 2, 24, 11 | | Bis (2-ethylhexyl) phthalate | 720 | 330 | ug/kg | 01/31/00 | | Di-n-butylphthalate | 18000 | 330 | ug/kg | 01/31/00 | | Volstile Organic Compounds, Solid | | | 3 3 | | | Acetone | 78 | 10 | ug/kg | 01/27/00 | | 2-Butanone | 190 | 10 | ug/kg | 01/27/00 | | Chlorobenzene | BDL | 10 | ug/kg | 01/27/00 | | 1,4-Dioxane | 170 | 100 | ug/kg | 01/27/00 | | Ethyl Benzene | 1300 | 10 | ug/kg | 01/27/00 | | Isobutanol | BDL | 10 | ug/kg | 01/27/00 | | Methylene Chloride | BDL | 10 | ns\ks | 01/27/00 | | 4-Methyl-2-Pentanone | BDL | 10 | ug/kg | 01/27/00 | | Tetrachloroethylene | 52 | 10 | ug/kg | 01/27/00 | Location Collected: MacDermid Inc., 526 Huntingdon Ave., Waterbury, CT Date Sample Collected: 01/13/00 Sample Description: 009 - Flam: Stor. EAS Project Number: 00010195 EAS Sample Number: 00010195-11 Date Sample Received: 01/13/00 | i. | : | | Detection | | Analysis | |------------------------|--------|------|-----------|--------|----------| | Parameter | 1 | Data | Limit | Units | Date | | Toluene | | 220 | 10 | !ug/kg | 01/27/00 | | 1,1,1-Trichloroethane | i | BDL | 10 | ug/kg | 01/27/00 | | Trichlorofluoromethane | : | BDL. | 10 | ug/kg | 01/27/00 | | Trichloroethylene | 1 | 16 | 10 | ug/kg | 01/27/00 | | Xylene | j
1 | 9000 | 10 | 'ug/kg | 01/27/00 | HRP Associates, Inc. 167 New Britain Avenue Plainville, CT 06062 Phone: 860-793-6899 # **HRP** MAC COIS.RC Job Number Sheet / of | Fax: 8 | 60-793 | -6871 | <u> </u> | | CHAIN OF CUSTODY Project Manager | | | | | DM | | | |--|--|----------|-------------------|-----------------|----------------------------------|-------------|------------------|---------------|--------------------|------------------|-------------|------------| | Place & Address of Collection. MAIL DERMID, Inc. Samplers Name (Signature) 526 HUNTINGDON AND WATERBURY, CT RING a Claude | | | | | | | | | | | | | | Sample I.D. | Sample L | | Container
Type | Total
Volume | | eservative | Date | Time | Samp | le Matrix | T | Remarks | | 005 | FLAM S | 16社。 | GLAKS | हिन | Co | ol | | | GNERE | TE CHIP | SEE | Biow | | 006 | 1 | | GLASS | 7 | | h | | | | t j | | (1 | | <u>co7</u> | | | | | | 1 | | <u> </u> | | | | | | 008 | | · | | | ,. | | | | | | | 1 | | 009 | 4 | | -4 | 4 | | * | | ļ | | 7 | <u> </u> | + | | | | | | | | | <u> </u> | | | | | | | | | | | | | | | | <u> </u> | | | | | ļ | | | | | | | | | | | - | | | | | | | · | | | ·· | | | | | | | Relinquished I | By (Signature | , 1 | 7-1 | a Ch | 4 | Receiv | ed By (Signature | 1 Set | J: jd.lk. | Date / 3. a | | Time 15:59 | | Relinquished I | | | his c | T CEL | ~70 | | ed By (Signature | | J: 19/14 | Date | | Time 13.37 | | Name & Addr | | | EAS | Cr | ~~~ | | ST | | DLEBURY | | <u>_</u> | | | Paramet | - | | | | | C-CAPE | Samp | | pecour j | | | | | | | R==== | | | T | · | | | | | | | | SEE R | Elin | | _ | | | | | | | | | | | | CILOUS | · | | | | ····· | | | | | | | | | | | | | | | | | - | | | | | | | | | | | | | | | • | | | | | | | | | | | · | | | - , | , | ند | | | | | | | | | , | Remarks: | Acc | PALA | METERS | א טוס נ | 977A | CHED L | ST RY | Myss
my ED | Anglysi
Toxici) | 'S
r Y | | | | ; | le win | 131 T 10 | , mil | ANIC INC | , R | 1 (7.12 | | | entact: | | ปะเท | WrTH | | Abbreviations: | G - GI | ass | P - Plastic. | | Amber | T:- TCL | | | · , — ——— | | | | | L | Abbreviations: G - Glass P - Plastic A - Amber T - TCLP Analysis M - Mass Analysis S - SPLP Analysis | | | | | | | | | | | | HRP Associates, Inc. 167 New Britain Avenue Plainville, CT 06062 **HRP** <u>/</u> of _ Sheet Phone: 860-793-6899 Job Number MAC 0078.20 | Fax: 860-793 | 3-6871 | | CHAIN OF | CUSTO | DY | Project N | lanager | RDM | | |---------------------------|---|-----------------|-----------------|----------------|---------------------------------------|-----------|----------------|----------------|--------------| | Place & Address of Coll | ection $\bigcap_{\mathbf{L} \in \mathcal{D}}$ | CLMID | , Inc | Sampler | s Name (Signa | ture) | | | | | 526 HUN | TING DON / | | | G | 12 | inta | <u> </u> | m D | | | Sample Sample I | | Total
Volume | Preservative | Date | Time | Sample | Matrix | Rem | arks | | 501 SOLDER | St. 1 GLASS | 803 | COUL | | | SOIL | | SCE B | ELOW | | 104 Soire | 57. Z 11 | h | 11 | | | 21 | | * 1 | | | | 2. 2/ | | | | | | ···· | | | | 010 Euro | BLANK GLASS | | cool | | | WAT | (A | 1. | | | OIL TRIP | anx " | | "/ | | | 1, | | 11 | | | N P | | | | | <u> </u> | | | <u> </u> | | | 015 5 | IRB GIAK | 2807 | root | - | · · · · · · · · · · · · · · · · · · · | Conca | 12 3 6 | ••• | | | | · | | | | | | | | , | | | | · - | | | | | | - | | | Relinquished By (Signatu | re) in d | 100 | Beceived | By (Signature) | y to | - All | Date / ? - ex | Tim/ | 15:35 | | Relinquished By (Signatur | 1 6000 | a C.u. | $\sim \nu$ | By (Signature) | July | 1/ | Date | Time | | | Name & Address of Labo | oratory: EAS | : Cer | narzeia, Si | - М, | DDIEB | UPP C | -T | | | | Parameters | | | | Sample | | | | | | | | | | | | | | • | | | | SEC BEION | · | | | | | | | <u> </u> | | | | | | | | | · | ···· | | | | | | | | | | | | | | | _ | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | _ | | | | | | | | | Remarks: 6 ALL T | PARAMETES O | N ATTA | CHED LIST T | BY MAG | SS Ami | 714516 | | | | | • 1~ A | DDITION, AL | L WET | ALG BY E | XTRACT | 10N BY | EP TO | xicity | | | | BIN ADDITION, | | | Da 2 2 2 2 4 1 | | | | | | | | Abbreviations: G 30 | | | ALCOHO | L IHRY | | ァ:加比 | | | | | wontexistious: D 🕳 C | 11455 F - F145TIC | A = A | muer - I - IULP | WIIGIA212 | M = M922 | HIIGIYSIS | a - artr Analy | 712 | 40.00 | HRP Associates, Inc. 167 New Britain Avenue Plainville, CT 06062 # **HRP** | | Silee | · | 01 _ | |------------|-------|-------|------| | Job Number | MAC | C028. | e C | Phone: 860-793-6899 CHAIN OF CUSTODY | ^c ax: 860-793-687 | 1 | OTIAIN OT | | | Project Manager | <u> </u> | | |--|--------------------------------|------------------|----------------|--------|-----------------|--------------|--| | Place & Address of Collection MAC DERMIN 1- Samplers Name (Signature) | | | | | | | | | 526 HUNTINGAIN AVE WATERBURY, CT / Lul (1 Club) | | | | | | | | | Sample Sample Location 1.D. | Container Total
Type Volume | Preservative | Date | Time | Sample Matrix | Remarks | | | ## 013 NMP 1 | 61854 80Z | COOL | | | SEE
CONCRE | SEE BELOW | | | DEPOIT NMP Z | 1. 1. | ٠, | | | ETE CONCRE | - 1/ | | | | (1 | | | | | | | | 201 NMP1 | - | | | | Soll | HoiD | | | ODE NAPZ | + 0 | J. | ···· | | Gult | HOLD | 2 | | | | | | | | | 11 | | | | | | | | | | | | .2 | | | | Relinquished By (Signature) | Lulaco | Received | By (Signature) | Pt 5. | Date /-/? | J Time /5/55 | | | Relinquished By (Signature) | | Received | By (Signature) | | Date | Time | | | Name & Address of Laboratory: | EG CA | S Comme | PC)AL S | PEET | MIDDLEBU | y CI | | | Parameters | | | Sample | | | | | | | | | . [| | | | | | SEE BELOW) | | | | | | | | | 700 | | | | | | _ | Remarks: A ALL PARAMA | ETERS DA AT | TACHEN LIST | RY N | Apss A | NALYSIS | | | | Remarks: • ALL PARAME | DDITION, AL | METALS BY | EXILA | CTIEN | BY EP Toxicis | y 1 | | | A SECOND . | | - 1 | | | | | | | | | ·
 | | | CO-THICK : MIKE | | | | Abbreviations: G G Glass P - Plastic A - Amber T - TCLP Analysis M - Mass Analysis S - SPLP Analysis | | | | | | | | #### **APPENDIX F** February 9, 2000 Sampling Results e\rdm\m\rcra closure summary EAS LABORATORIES FROM # FACSIMILE COVER PAGE | Date: | February 22, 2000 | | |-----------------------|---|--| | To: | Mike C. | | | Firm: | HRP | | | Fax Number: | 860 793-6871 | | | From: | Harry Mullin | | | | r of pages to be sent (including cover sheet): ofollow: YESNO | | | Message: | | | | Reports. The hardcopy | will be mailed to Greg Strong. | | | Thank you
Harry | | | | | | | | | • | | This message is intended only for the use of the individual to whom, or entry to which, it is addressed and may contain information that is privileged, confidential and exempt from disclosure under applicable law. If the reader of this message is not the intended recipient or the employee or agent responsible for delivering the message to the intended recipient, you are hereby notified that any dissemination, distribution, or copying of this communication is prohibited. If you have received this communication in error, please notify us immediately by telephone (collect), and return the original message to us at the above address. Thank you. #### MACDERMID, INC. Location Collected: 526 Huntingdon Avenue, Waterbury, CT Date Sample Collected: 02/09/00 Sample Description: B001 Solder Strip Strip SLAFALE SOIL EAS Project Number: 00020124 EAS Sample Number: 00020124-01 Date Sample Received: 02/09/00 Chient Project Number: MAC0028 RC | | | Detection | : | Analysis | |--------------------------------------|-----------|---|-------|-----------| | Parameter | Data | Limit | Units | Date | | Cadmium, Leachable | 0.01 | 0.010 | mg/L | 02/17/00 | | Cadmium, Solid | 10 | 0.10 | mg/kg | 02/15/00 | | Chromium, Leachable | 0.26 | 0.040 | mg/L | 02/17/00 | | Copper, Leachable | 0.97 | 0.030 | mg/L | 02/17/00 | | Copper, Solid | 950 | 0.20 | mg/kg | 02/15/00 | | Lead, Solid | 79 | 1.0 | mg/kg | 02/15/00 | | Metals Digestion for 6010B, Leachate | Completed | | | 02/14/00 | | Metals Digestion for 6010B, Solid | Completed | | | 02/11/00 | | Tin, Leachable | 36 | 0.020 | mg/L | 02/17/00. | | EP Toxicity Leaching Procedure | Completed | : : | • , | 02/11/00 | | Volatile Organic Compounds, Solid | - | · • • • • • • • • • • • • • • • • • • • | : | | | Trichloroethylene | 95 | 10 | ug/kg | 02/15/00 | Location Collected: 526 Huntingdon Avenue, Waterbury, CT Date Sample Collected 02/09/00 Sample Description: B002 Solder Strip 1' BEIM EAS Project Number: 00020124 EAS Sample Number: 00020124-02 Date Sample Received: 02/09/00 Client Project Number: MAC0028.RC | | | Detection | • | Analysis | |--------------------------------------|-----------|-----------|-------|----------| | Parameter | Data | Limit | Units | Date | | Cadmium, Leachable | BDL | 0.010 | mg/L | 02/17/00 | | Cadmium, Solid | 7.0 | 0.10 | mg/kg | 02/15/00 | | Chromium, Leachable | 0.043 | 0.040 | mg/L | 02/17/00 | | Copper, Leachable | 0.17 | 0.030 | mg/L | 02/17/00 | | Copper, Solid | 500 | 0.20 | mg/kg | 02/15/00 | | Lead, Solid | 55 | 1.0 | mg/kg | 02/15/00 | | Metals Digestion for 6010B. Leachate | Completed | | į | 02/14/00 | | Metals Digestion for 6010B, Solid | Completed | | : | 02/11/00 | | Tin, Leachable | 2.6 | 0.020 | mg/L | 02/17/00 | | EP Toxicity Leaching Procedure | Completed | | | 02/11/00 | | Volatile Organic Compounds, Solid | | | ļ | | | Trichloroethylene | 15 | 10 | ug/kg | 02/18/00 | ## MACDERMID, INC. Location Collected: 526 Huntingdon Avenue, Waterbury, CT Date Sample Collected: 02/09/00 Sample Description: B003 Solder Strip EAS Project Number: 00020124 EAS Sample Number: 00020124-08 Date Sample Received: 02/09/00 Client Project Number: MAC0028.RC | Parameter | Data | Detection
Limit | 77 | Analysis | |--------------------------------------|-----------|--------------------|-------|----------| | ratameter | Data | Lillin | Units | Date | | Cadmium, Leachable | BDL | 0.010 | mg/L | 02/17/00 | | Cadmium, Solid | 35 | 0.10 | mg/kg | 02/15/00 | | Chromium, Leachable | BDL | 0.040 | mg/L | 02/17/00 | | Copper, Leachable | 0.086 | 0.030 | mg/L | 02/17/00 | | Copper, Solid | 450 | 0.20 | mg/kg | 02/15/00 | | Lead, Solid | 1700 | 1.0 | mg/kg | 02/15/00 | | Metals Digestion for 6010B, Leachate | Completed | • • | · | 02/14/00 | | Metals Digestion for 6010B, Solid | Completed | | , | 02/11/00 | | Tin, Leachable | 0.028 | 0.020 | mg/L | 02/17/00 | | EP Toxicity Leaching Procedure | Completed | • | | 02/11/00 | | Volatile Organic Compounds, Solid | | | | | | Trichloroethylene | 170 | 10 | ug/kg | 02/16/00 | 1130102 ### MACDERMID, INC. Location Collected: 526 Huntingdon Avenue, Waterbury, CT Date Sample Collected: 02/09/00 Sample Description: B004 Solder Strip EAS Project Number: 00020124 EAS Sample Number: 00020124-04 Date Sample Received: 02/09/00 Client Project Number: MAC0028.RC | | | Detection | ^ . | Analysis | |--------------------------------------|-----------|-----------|-------|----------| | Parameter | Data | Limit | Units | Date | | Cadmium, Leachable | BDL | 0.010 | mg/L | 02/17/00 | | Cadmium, Solid | 5.3 | 0.10 | mg/kg | 02/15/00 | | Chromium, Leachable | BDL | 0.040 | mg/L | 02/17/00 | | Copper, Leachable | 0.12 | 0.030 | mg/L | 02/17/00 | | Copper, Solid | 88 | 0.20 | mg/kg | 02/15/00 | | Lead, Solid | 42 | 1.0 | mg/kg | 02/15/00 | | Metals Digestion for 6010B, Leachate | Completed | | | 02/14/00 | | Metals Digestion for 6010B, Solid | Completed | | | 02/11/00 | | Tin, Leachable | BDL | 0.020 | mg/L | 02/17/00 | | EP Toxicity Leaching Procedure | Completed | | | 02/11/00 | | Volatile Organic Compounds, Solid | | | | | | 1 ! | BDL | 10. | ug/kg | 02/18/00 | SURFACE SOIL ### MACDERMID, INC. Location Collected: 526 Huntingdon Avenue, Waterbury, CT Date Sample Collected: 02/09/00 Sample Description: B005 Solder Strip EAS Project Number: 00020124 EAS Sample Number: 00020124-05 Date Sample Received: 02/09/00 Client Project Number: MAC0028.RC | | • | Detection | ; | Analysis | |--------------------------------------|-----------|-----------|-------|----------| | Parameter | Data | Limit | Units | Date | | Cadmium, Leachable | 0.084 | 0.010 | mg/L | 02/17/00 | | Cadmium, Solid | 7.6 | 0.10 | mg/kg | 02/15/00 | | Chromium, Leachable | 0.94 | 0.040 | mg/L | 02/17/00 | | Copper, Leachable | 14 | 0.030 | mg/L | 02/17/00 | | Copper, Solid | 1400 | 0.20 | mg/kg | 02/15/00 | | Lead, Solid | 580 | 1.0 | mg/kg | 02/15/00 | | Metals Digestion for 6010B, Leachate | Completed | • | | 02/14/00 | | Metals Digestion for 6010B, Solid | Completed | • | | 02/11/00 | | Tin, Leachable | 19 | 0.020 | mg/L | 02/17/00 | | EP Toxicity Leaching Procedure | Completed | | • | 02/11/00 | | Volatile Organic Compounds, Solid | | • . | | | | Trichloroethylene | 46 | 10 | ug/kg | 02/15/00 | Location Collected: 526 Huntingdon Avenue, Waterbury, CT Date Sample Collected: 02/09/00 Sample Description: B006 Solder Strip EAS Project Number: 00020124 EAS Sample Number: 00020124-06 Date Sample Received 02/09/00 | | .* | Detection | | Analysis | |--------------------------------------|-----------|-----------|--------|-------------| | Parameter | Data | Limit | Units | <u>Date</u> | | Cadmium, Leachable | BDL | 0.010 | mg/L | 02/17/00 | | Cadmium, Solid | 5.8 | 0.10 | m≀g/kg | 02/15/00 | | Chromium, Leachable | BDL | 0.040 | mg/L | 02/17/00 | | Copper, Leachable | 0.64 | 0.030 | mg/L | 02/17/00 | | Copper, Solid | 370 | 0.20 | mg/kg | 02/15/00 | | Lead, Solid | 96 | 1.0 | mg/kg | 02/15/00 | | Metals Digestion for 6010B, Leachate | Completed | | : | 02/14/00 | | Metals Digestion for 6010B, Solid | Completed | | : | 02/11/00 | | Tin, Leachable | 0.24 | 0.020 | mg/L | 02/17/00 | | EP Toxicity Leaching Procedure | Completed | • | • | 02/11/00 | | Volatile Organic Compounds, Solid | | | • | : | | Trichloroethylene | BDL | 10 | ug/kg | 02/18/00 | Location Collected: 526 Huntingdon Avenue, Waterbury, CT Date Sample Collected: 02/09/00 Iday Stain Sample Description: B007 Solder Strip EAS Project Number: 00020124 EAS Sample Number: 00020124-07 Date Sample Received: 02/09/00 Client Project Number: MAC0028.RC | | | Detection | | Analysis | |--------------------------------------|-----------|-----------|-------|----------| | Parameter | Data | Limit | Units | Date | | Cadmium, Leachable | BDL | 0.010 | mg/L | 02/17/00 | | Cadmium, Solid | 5.2 | 0.10 | mg/kg | 02/15/00 | | Chromium, Leachable | 0.07 | 0.040 | mg/L | 02/17/00 | | Copper, Leachable | 0.92 | 0.030 | mg/L | 02/17/00 | | Copper, Solid | 2100 | 0.20 | mg/kg | 02/15/00 | | Lead, Solid | 24 | 1.0 | mg/kg | 02/15/00 | | Metals Digestion for 6010B, Leachate | Completed | | • | 02/14/00 | | Metals Digestion for 6010B, Solid |
Completed | . • | | 02/11/00 | | Tin, Leachable | 0.58 | 0.020 | mg/L | 02/17/00 | | EP Toxicity Leaching Procedure | Completed | • | | 02/11/00 | | Volatile Organic Compounds, Solid | • | | | | | Trichloroethylene | BDL | 10 | nā\ķā | 02/18/00 | #### ٦ ## MACDERMID, INC. Location Collected: 526 Huntingdon Avenue, Waterbury, CT **◯** Date Sample Collected: 02/09/00 Sample Description: B007 Solder Strip EAS Project Number: 00020124 EAS Sample Number: 00020124-07 Date Sample Received 02/09/00 | • | | • | ľ | |----------------|--------|--------|------| | Client Project | Number | MAC002 | 8.RC | | | | | | | | | Detection | | Analysis | |--------------------------------------|-----------|-----------|-------|-------------| | Parameter | Data | Limit | Units | <u>Date</u> | | Cadmium, Leachable | BDL | 0.010 | mg/L | 02/17/00 | | Cadmium, Solid | 5.2 | 0.10 | mg/kg | 02/15/00 | | Chromium, Leachable | 0.07 | 0.040 | mg/L | 02/17/00 | | Copper, Leachable | 0.92 | 0.030 | mg/L | 02/17/00 | | Copper, Solid | 2100 | 0.20 | mg/kg | 02/15/00 | | Lead, Solid | 24 | 1.0 | mg/kg | 02/15/00 | | Metals Digestion for 6010B, Leachate | Completed | | | 02/14/00 | | Metals Digestion for 6010B, Solid | Completed | . • | | 02/11/00 | | Tin, Leachable | 0.58 | 0.020 | mg/L | 02/17/00 | | EP Toxicity Leaching Procedure | Completed | - | | 02/11/00 | | Volatile Organic Compounds, Solid | • | | | | | Trichloroethylene | BDL | 10 | ug/kg | 02/18/00 | Location Collected: 526 Huntingdom Avenue, Waterbury, CT Date Sample Collected, 02/09/00 Sample Description: CC008 Flam Stor EAS Project Number: 00020124 | EAS Sample Number: 00020124 | Date Sample Received: 02/09/00 | Client Project Number: MAC0028.RC | į. | <u> </u> | | | Detection | | Analysis | |------------------------|----------|-------|-----------|-----------|-------|----------| | Parameter | | | Data | Limit | Units | Date | | TCLP for Volatile Orga | nic Comp | ounds | Completed | | | 02/15/00 | | TCLP Volatile List | ! | | | · | | | | Tetrachloroethene | ;
; | | 11 | 10 | ug/L | 02/16/00 | | Trichloroethene | | | BDL | 10 | ug/L | 02/16/00 | Location Collected: 526 Huntingdon Avenue, Waterbury, CT Date Sample Collected: 02/09/00 Sample Description: CC009 Flam Stor EAS Project Number: 00020124 EAS Sample Number: 00020124-09 Date Sample Received: 02/09/00 | | : | | | Detecti | on | | Analysis | |------------------------|-----------|-------|-----------|---------|--|-------|----------| | Parameter | <u> </u> | | Data | Limit | <u>; </u> | Units | Date | | Cadmium, Leachable | | | BDL | 0.010 | • | mg/L | 02/17/00 | | Metals Digestion for 6 | 010B, Lea | chate | Completed | | | | 02/14/00 | | EP Toxicity Leaching | Procedure | • | Completed | | • | | 02/11/00 | Location Collected: 526 Huntington Avenue, Waterbury, CT. Date Sample Collected: 02/09/00 Sample Description: B010 Solder Strip EAS Project Number: 00020124 EAS Sample Number: 00020124-10 Date Sample Received: 02/09/00 Client Project Number: MAC0028.RC | | • | Detection | 1. | . : | Analysis | |--------------------------------------|------------|--------------|----------|-------|-------------| | Parameter | Data | <u>Limit</u> | <u>:</u> | Units | <u>Date</u> | | Cadmium, Leachable | 0.029 | 0.010 | | mg/L | 02/17/00 | | Cadmium, Solid | <i>7</i> 5 | 0.10 | : | mg/kg | 02/15/00 | | Metals Digestion for 6010B, Leachate | Completed | į | : | | 02/14/00 | | Metals Digestion for 6010B, Solid | Completed | | : | | 02/11/00 | | Nickel, Solid | 420 | 0.40 | | mg/kg | 02/15/00 | | EP Toxicity Leaching Procedure | Completed | | | | 02/11/00 | Location Collected: 526 Huntingdon Avenue, Waterbury, CT Date Sample Collected: 02/09/00 Sample Description: B011 Solder Strip EAS Project Number: 00020124 EAS Sample Number: 00020124-11 Date Sample Received: 02/09/00 | | | Detection | | Analysis | |--------------------------------------|-----------|-----------|-------|----------| | Parameter | Data | Limit | Units | Date | | Cadmium, Leachable | 0.028 | 0.010 | mg/L | 02/17/00 | | Cadmium, Solid | 85 | 0.10 | mg/kg | 02/17/00 | | Metals Digestion for 6010B, Leachate | Completed | 1 | , | 02/14/00 | | Metals Digestion for 6010B, Solid | Completed | 1 | | 02/11/00 | | Nickel, Solid | 400 | 0.40 | mg/kg | 02/15/00 | | EP Toxicity Leaching Procedure | Completed | i | | 02/11/00 | Location Collected: 525 Huntingdon Avenue, Waterbury, CT Date Sample Collected: 02/09/00 Sample Description: B012 Solder Strip EAS Project Number: 00020124 EAS Sample Number: 00020124-12 Date Sample Received: 02/09/00 | | • | Detection | | Analysis | |--------------------------------------|-----------|-----------|-------|----------| | Parameter | Data | Limit | Units | Date | | Cadmium, Leachable | 0.18 | . 0.010 | mg/L | 02/17/00 | | Cadmium, Solid | 110 | 0.10 | mg/kg | 02/17/00 | | Metals Digestion for 6010B, Leachate | Completed | | • | 02/14/00 | | Metals Digestion for 6010B, Solid | Completed | | • | 02/11/00 | | Nickel, Solid | 450 | 0.40 | mg/kg | 02/15/00 | | EP Toxicity Leaching Procedure | Completed | | | 02/11/00 | ΤQ ## MACDERMID, INC. Location Collected: 526 Huntingdon Avenue, Waterbury, CT Date Sample Collected: 02/09/00 Sample Description: Trip Blank EAS Project Number: 00020124 EAS Sample Number: 00020124-13 Date Sample Received: 02/09/00 Client Project Number: MAC0028.RC | | | | Detection | | Analysis | | |--------------------------------|-------|-----------|-----------|-------|----------|--| | Parameter | : | Data | Limit | Units | Date | | | Cadmium, Water | | BDL | 0.010 | mg/L | 02/18/00 | | | Chromium, Water | • | BDL | 0.040 | mg/L | 02/18/00 | | | Copper, Water | | BDL | 0.030 | mg/L | 02/18/00 | | | Lead, Water | | BDL | 0.050 | mg/L | 02/18/00 | | | Metals Digestion for 200.7, Wa | ater | Completed | | | 02/17/00 | | | Nickel, Water | | BDL | 0.020 | mg/L | 02/18/00 | | | Tin, Water | | BDL | 0.010 | mg/L | 02/18/00 | | | Zinc, Water | | 0.023 | 0.010 | mg/L | 02/18/00 | | | Volatile Organic Compounds, | Water | | i | , | | | | Tetrachloroethylene | | BDL | 0.50 | ug/L | 02/15/00 | | | Trichloroethylene | | BDL | 0.50 | ug/L | 02/15/00 | | #### P.15 ## MACDERMID, INC. Location Collected: 526 Huntingdon Avenue, Waterbury, CT Date Sample Collectedt 02/09/00 Sample Description: Equipment Blank EAS Project Number: 00020124 EAS Sample Number: 00020124-14 Date Sample Received: 02/09/00 | | | Detection | | Analysis | |-----------------------------------|-----------|-----------|-------|----------| | Parameter | Data | Limit | Units | Date | | Cadmium, Water | BDL | 0.010 | mg/L | 02/18/00 | | Chromium, Water | BDL | 0.040 | mg/L | 02/18/00 | | Copper, Water | BDL | 0.030 | mg/L | 02/18/00 | | Lead, Water | BDL | 0.050 | mg/L | 02/18/00 | | Metals Digestion for 200.7. Water | Completed | • | | 02/17/00 | | Nickel, Water | BDL | 0.020 | mg/L | 02/18/00 | | Tin, Water | BDL | 0.010 | mg/L | 02)18/00 | | Zinc, Water | 0.018 | 0.010 | mg/L | 02/18/00 | | Volatile Organic Compounds, Water | | • | | : | | Tetrachloroethylene | BDL | 0.50 | ug/L | 02/15/00 | | Trichloroethylene | BDL | 0.50 | ug/L | 02/15/00 | # FACSIMILE COVER PAGE | Date: | ret | oruary 2. | 2, 2000 | : | | | | | | | | • | | | |--|--|---|---|-------------------------------|----------|---------------------------------------|-------------------------------------|---------------------------------|-------------------|-------------------|----------------------|--------|---------------------|-------------------| | To: | Mil | ke C. | ;
; | | | * | | | | | i
• | | | | | Firm: | HR | :
JP | · | | | | | • |
 | , . | :
! | | | | | Fax Num | ber: 860 | 793-687 | 1 | • | | | | | | • | : | • | - | | | From: | Har | y Mulli | 1
1 | | | | · | | | : | | | | | | Total num | · | | | nclud
NO | ling co | over sh | eet): | | | | :
!
! | | | | | Message: | | | ; | :
: | : | _ | | | İ | | | : | | | | Reports. | | | | : | | | | | : | • | | | | | | Thank yo
Harry | ų · | • • • | | : | | | | | | : | | ; | | | | : | | | | } | | | ; | | | | | | | : | | | | | | | | | | | | | | : | | | | ***** | | ******* | ********** | :
!
!AGE##### | *** | | ****** | ,,,,,, ,,, | | ***** | 27422779 | | 4**** | 14 | | This message is
privileged, con
employee or a
distribution, or
by telephone (c | fidential and
year respon
copying of | exempt fro
sible for de
this commun | m disclosure
livering the
ucation is pr | under :
messag
ohlbited | e to the | e law. If i
intended
have recel | the reade
recipien
ved this o | a of this
t, you u
commun | messag
re here | e is no
by not | the intentified that | ded re | ciplent
Iissemin | or the
12tian, | ### MACDERMID, INC. Location Collected: 526 Huntingdon Ave, Waterbury, CT Date Sample Collected: 01/13/00 Sample Description: 014 NMP 2 EAS Project Number: 00020096 EAS Sample Number: 00020096-02 Date Sample Received: 02/08/00 Client Project Number: MAC0028.RC | | | | Detection | • | Analysis | |--------------------------------------|---|-------------|-----------|-------|----------| | Parameter | | <u>Data</u> | Limit | Units | Date | | Chromium, Leachable | ; | 0.70 | 0.020 | mg/L | 02/10/00 | | Metals Digestion for 6010B, Leachate | | Completed | | | 02/09/00 | | Zinc, Leachable | ! | 0.016 | 0.0050 | mg/L | 02/10/00 | | EP Toxicity Leaching Procedure | | Completed | | | 02/08/00 | ### MACDERMID, INC. Location Collected: 526 Huntingdon Ave, Waterbury, CT Date Sample Collected: 01/13/00 Sample Description: 013 NMP 1 EAS Project Number: 00020096 EAS Sample Number: 00020096-01 Date Sample Received: 02/08/00 Client Project Number: MAC0028.RC | · | | | | Detection | ! | Analysis | |------------------
-----------------|------|-----------|-----------|----------|----------| | Parameter | | : | Data | Llimit | Units | Date . | | Chromium, Lead | hable | | 0.75 | 0.020 | mg/L | 02/10/00 | | Copper, Leachab | le | | BDL | 0.010 | mg/L | 02/10/00 | | Lead, Leachable | | ! | BDL | 0.050 | mg/L | 02/10/00 | | Metals Digestion | for 6010B, Lead | hate | Completed | | | 02/09/00 | | Zinc, Leachable | | | 0.02 | 0.0050 | mg/L | 02/10/00 | | EP Toxicity Lead | hing Procedure | | Completed | | • | 02/08/00 | ### MACDERMID, INC. Location Collected: 526 Huntingdon Ave, Waterbury, CT Date Sample Collected: 01/13/00 Sample Description: 003 Solder St. 1 EAS Project Number: 00020096 EAS Sample Number: 00020096-03 Date Sample Received: 02/08/00 | | | Detection | | Analysis | |--------------------------------------|-----------|-----------|-------|----------| | Parameter | Data | Limit | Units | Date | | Cadmium, Leachable | 0.025 | 0.0050 | mg/L | 02/10/00 | | Cadmium, Solid | 15 | 0.10 | mg/kg | 02/10/00 | | Metals Digestion for 6010B, Leachate | Completed | | | 02/09/00 | | Metals Digestion for 60 10B, Solid | Completed | | | 02/08/00 | | Nickel, Solid | 72 | 0.40 | mg/kg | 02/10/00 | | EP Toxicity Leaching Procedure | Completed | | | 02/08/00 | HRP Associates, Inc. 167 New Britain Avenue Plainville, CT 06062 **HRP** of Z Sheet Phone: 860-793-6899 CHAIN OF CUSTODY Job Number | 526 1 | -lu-TI-GDO | ~ AVE | NVE | , WAT | ERBURY. | CI | | | 1 4 6 | lut | } | |--|--|---------------------------------------|-----------------|---|-------------------------------|---------------------------------|---------------------|------------------------------------|---------------------------------------|--------|--------------| | Sample
I.D. | Sample Location | Container
Type | Total
Volume | .Р | reservative | Date | Time | Sam | ple Matrix | R | emarks | | B001 | SOLDER STRIP. | GLASS | 802 | (| COBL | 24/00 | 11 Am | 5011 | | SURTI | AL E | | B 002 | | | <u> </u> | | | | 11/5 | | | 12. | | | B003 | | | | | | | 1130 | | | SURF | ALĒ | | BUDY | | | | | | | 1145 | | | 1 | | | B105 | | | | | | | 1200 | | | SURF | ALE | | Bool | | | | | | | 1 Pm | | ·
· | ,, | | | BCV7 | - + | ¥ | + | | - | | 1 15 pm | 1 + | · · · · · · · · · · · · · · · · · · · | 1' | | | CC 008 | FLAM STUR | GLASS | | | | 1 | 230 ps | CONCR | ETE | From o | 05 [1] | | CC 009 | FLAN STOR | GLA45 | 4 | <u> </u> | + | 4 | 245 p | ,, | | From | 107 [1 | | | | | | <u>L_</u> | | | | | · · · · · · | | | | Relinquished I | By (Signature) | 2x1 | S. | | Receive | ed By (Signature | 1 | n | Date 4/9 | a T | ime/00 | | Relinquished I | By (Signature) | : | | | | ed By (Signature | <u> </u> | | Date | T | ime | | | | - A | | C | | <u> </u> | | | _ | | | | Name & Addr | ress of Laboratory: | CAS | | Comn | ner cial | 27. | MIDDL | EBURY, | CT | | | | Name & Addr
Paramet | | (173 | | COMM | ner cial | >T.
Samp | | EBURY, | 4 | | | | ~ | | | | UP Z | rercial
Buos | | | BURY, | B067 | Boog | Bao | | | iers | | 001 B | | | Samp | ole ID | | | Bog | Bao | | Paramet | ers
LEMMAZ | B
 γ | 001 B | NB 5 | 8103 | Samp
BCo ¹ / | ile ID
Bous | Buol | 8007 | Bog | Bao | | Paramet | LEMANT
SOLID | B X | 001 B | vo L
Y | B103 | Samp
PLCo ¹ / | rous
X | Bvol
X | B007
X | Boog | | | Paramete CADMIUM, CADMIUM, | LEMMAT
SOLID
LEACHAE | B X X | DO1 B | yol
Y | д103
Х | Samp
FCo ¹ /
X | Rous
X | BVOG
X | B007
X | Boog | | | Paramet
CADMIUM,
CADMIUM,
CHOMIUM,
COPPER, So | LEACHAE | B 7x x x | 001 B | νε | 7 X | Samp BCo ¹ / X X | Rous
X
X | BUDG
X
A | B007
X | Book | Boo | | CADMIUM, CADMIUM, CADMIUM, CADMIUM, CAPPER, SO | LEACHAE | B X X X X X X X X X | 001 B | νε | 7 X X | Samp Roo'l X X X | ROUS X X X | BVOG
X
A
X
X | B007
X | Bos | | | Paramete CADMIUM, CADMIUM, CADMIUM, CADMIUM, CADMIUM, CAPPER, SO LEAD, SO LIN, LEAR | LEACHAE LID HAJE | B γ γ γ γ γ γ γ γ γ | 001 B | νο \
\(\times \) \(\times \) | 7
X
X
X
X | Samp RUO' X X X X | ROUS X X X | BUDG
X
A
A | 8067
X
X
X
Y | Boog | | | Paramete CADMIUM, CADMIUM, CADMIUM, CAPPER, SO LEAD, SO (IN, LEAD TRICHLUZO | LEACHAE LID LID HAIE FINGE E - Mass | B γ γ γ γ γ γ γ γ γ | 001 B | νο Σ | 8103
X
X
X
X
X | Samp RUO' X X X X X | Rous X X X X X | BIDG
X
1
X
X
X
X | 8067
X
X
X
Y | | | | Paramete CADMILMA, ADMILMA, CADMILMA, CAPPER, SO LEAD, SO LIN, LEAD TRICHLUZU NOCKEL | LEACHAE LID LID HAIE FINGE E - Mass | B γ γ γ γ γ γ γ γ γ | 001 B | νο Σ | 8103
X
X
X
X
X | Samp RUO' X X X X X | Rous X X X X X | BIDG
X
1
X
X
X
X | 8067
X
X
X
Y | | | | Paramete CADMIUM, CADMIUM, CADMIUM, CADMIUM, CADMIUM, CAPPER, SO LEAD, SO LIN, LEAR | LEACHAE LID HAIE FINGE E - MASSISOLID ATE | B γ γ γ γ γ γ γ γ γ | 001 B | νο Σ | 8103
X
X
X
X
X | Samp RUO' X X X X X | Rous X X X X X | BIDG
X
1
X
X
X
X | 8067
X
X
X
Y | | | | Paramete CADMIUM, CADMIUM, CADMIUM, CADMIUM, CADMIUM, CAPPER, SO LEAD, SO (IN, LEAD MICHELLA MICHELLA LEAD LEACH CAME, LEACH CAME, LEACH | LEACHAE LID LID HA)E FINNE E - MASS (SOLID ATE | B
X
X
X
S Punt. X | 001 B | νο Σ | 8103
X
X
X
X
X | Samp RUO' X X X X X | Rous X X X X X | BIDG
X
1
X
X
X
X | 8067
X
X
X
Y | | | | Paramete CADMIUM, CADMIUM, CADMIUM, CADMIUM, CADMIUM, CAPPER, SO LEAD, LEACH CAMERICAL LEACHICK | LEACHAE LID HAIE FINGE E - MASSISOLID ATE | B
X
X
X
S Bugs. X | 001 B | νο Σ | 8103
X
X
X
X
X | Samp RUO' X X X X X | Rous X X X X X | BIDG
X
1
X
X
X
X | 8067
X
X
X
Y | | | A - Amber T - TCLP Analysis M - Mass Analysis S - SPLP Analysis gyrhNorms\chain2.rhi: White Copy - Accounting Yellow Copy - Lab Pink Copy - Field Services Gold Copy - Job File Nº 11235 HPP CONTACT: MIKE CHENONETH P - Plastic HRP Associates, Inc. 167 New Britain Avenue Plainville, CT 06062 Phone: 860-793-6899 Fax: 860-793-6871 # HRP. **CHAIN OF CUSTODY** Sheet Z of Z MAC WZ8.RC Job Number Project Manager RDM | | Sample | Location | Container
Type | Total
Volume | Pr | eservative
 | Date | Time | Sam | ole Matrix | | emarks | |----------------|--|-------------------|--|-----------------|---------------|----------------|--|-----------------|-------------|---------------|-------------|-------------| | 8010 | SULDE | e 51211 | 61735 | 807 | C | ∞L | 2900 | | CONC | Ri il | 2415 | SLY | | 011 | | | | | | 1 | | 1015 | | 1 | | } | | 012 | 4 | , | + | 1 | | | | 1045 | | 4 | | | | NO13 | TRIP | BLANK | P.C | 11802 | | 1 | | GAr | WA | TLL | BIA | μX | | 4014 | COVIP | BLACK | ₽ " | 1 , 801 | <u> </u> | 4 | ļ | 2 00 | | 11 | | IV . | | | | | |
 | | | <u> </u> | | ļ | | | | | ROIDA | South | 75819 | | | | 1 | | 10 pm | Sû | ١.١ | SURI | ALI | | BESSI | | 1 | | | | · | | 1015 | | | | , | | BOILA | | } | | | | • | - | 1045 | | - | | | | BOKA | <u> </u> | | | | | 72 | | | |) | 1 | | | Relinquished I | | | 2- | <u> </u> | | | ed By (Signatur | _///- | 121 | Date 9/ | | me// | | Relinquished 8 | | | <u> </u> | | | | d By (Signatu | | | Date | | me | | Name & Addr | | oratory: | ins | | ון חמזי | PECCIAL | | | UDDIE | BURY. | CI | | | Paramet | ers | | | - | 1 | | | ple ID | | | | | | | | ·
 | Boi | | 011 | BOIL | W013 | 4014 | | | | | | ADMINIO L | EALHAI | | X | | Y | X | Х | <u> </u> |
 | | | | ADMINA! | SOLID | | <u> </u> | | 7 | + | У. | X | 1 1 | | | | | ראעווחוטאון | LAZH | नार | | | | | X |) X | | | | | | COPPER, | 20117 | <u> </u> | | | | | У | V | | | | | | LIAD, So | LID | | | <u> </u> | | | <u> </u> | 7 | | | | | | TIN, LEA | C1117 TE | - 1 1 <u>- 1 </u> | 111.11.11 | | | | Χ | X | | | | \$ 1 | | TEICHIAZOE | 14716 | - MASS | | | | | <u> 1</u> | Y | | | | | | NICLEL, SI | | | X | | ナー | X | + | X | | | | | | LEND, LE | | | | | | | <u> </u> | 1 7 | · | | | | | 34, 25 | ACHA | <u> </u> | | | | | <u> </u> | X | | | | | | TETRACHI | recet | nei-16 | u | | | | | | | | | | | L | ETHYL | -E -761 | 7 | | | | | | | 1 8 2 July 1 | | | | MICHLIPO | ii ii | 1 | | | 74 F | | X | $ \mathcal{X} $ | | | | *** | | CAPPEC, L | | n Ma | Y. | 1.5 | - 1 | 1. | . X | X | | | | | | | TOEZH | | <u>' </u> | | | | | | | | | | ### **APPENDIX G** April 26-28, 2000 Sampling Results e\rdm\m\rcra closure summary Associates Inc May 11, 2000 MACDERMID, INC. 245 Freight Street Waterbury, CT 06702 Attention: Mr. Greg Strong EAS Project Number: 00040396 Location Collected: MacDermid, Inc., 526 Huntingdon Ave, Waterbury, CT Copies of this report and the supporting computer stored data are retained in our files in the event they are required for future reference. Any sample submitted to our laboratory will be retained for a maximum of thirty (30) days from receipt of the report. All analytical data, unless otherwise specified, is reported on a wet weight (as received) basis. Our laboratory is a multi-state Certified Public Health Laboratory, offering a full range of analytical services that include: Water and Wastewater Analysis Hazardous Waste Analysis (RCRA) Full Priority Pollutant Analysis Drinking Water Analysis Laboratory Director encl. Location Collected: MacDermid, Inc., 526 Huntingdon Ave, Waterbury, CT Date Sample Collected: 04/26/00 Sample Description: CC010/Flam. Storage EAS Sample Number: 00040396-01 LIMS ID Number: AB04902 Date Sample Received: 04/28/00 Client Project Number: MAC0028.RC | | | Analysis | | | |---|--------|----------|-------|----------| | Parameter | Data | Limit | Units | Date | | TCLP for Volatile Organic Compounds Volatile Organic Compounds, Leachable | Comple | ted | | 05/01/00 | | Tetrachloroethylene | 2.2 | 0.50 | ug/L | 05/10/00 | Location Collected: MacDermid, Inc., 526 Huntingdon Ave, Waterbury, CT Date Sample Collected: 01/13/00 Sample Description: 001/NMP 1 EAS Sample Number: 00040396-02 LIMS ID Number: AB04903 Date Sample Received: 04/28/00 | | | Detection | | Analysis | |---|-----------------|-----------|-------|----------------------| | Parameter | Data | Limit | Units | Date | | Chromium, Leachable
EP Toxicity Leaching Procedure | BDL
Complete | 0.02
d | mg/L | 05/08/00
05/03/00 | Location Collected: MacDermid, Inc., 526 Huntingdon Ave, Waterbury, CT Date Sample Collected: 01/13/00 Sample Description: 002/NMP 2 EAS Sample Number: 00040396-03 LIMS ID Number: AB04904 Date Sample Received: 04/28/00 Client Project Number: MAC0028.RC | | | Detection | | Analysis | |--------------------------------|-----------|-----------|--------------|----------| | Parameter | Data | Limit | <u>Units</u> | Date | | Chromium, Leachable | BDL | 0.02 | mg/L | 05/08/00 | | EP Toxicity Leaching Procedure | Completed | i · | | 05/03/00 | Location Collected: MacDermid, Inc., 526 Huntingdon Ave, Waterbury, CT Date Sample Collected: 04/28/00 Sample Description: B007A/Solder Strip EAS Sample Number: 00040396-04 LIMS ID Number: AB04905 Date Sample Received: 04/28/00 | | | Detection | | Analysis | |--------------------------------|-----------|-----------|-------|----------| | Parameter | Data | Limit | Units | Date | | Chromium, Leachable | 0.028 | 0.02 | mg/L | 05/08/00 | | EP Toxicity Leaching Procedure | Completed | | | 05/03/00 | Location Collected: MacDermid, Inc., 526 Huntingdon Ave, Waterbury, CT Date Sample Collected: 04/27/00 Sample Description: B013A/Solder Strip EAS Sample Number: 00040396-05 LIMS ID Number: AB04906 Date Sample Received: 04/28/00 | | | Detection | | Analysis | |---------------------------------------|-----------|-----------|-------------|----------| | Parameter | Data | Limit | Units | Date | | Cadmium, Leachable | 0.0074 | 0.005 | mg/L | 05/08/00 | | Cadmium, Solid | 13 | 0.10 | mg/kg | 05/05/00 | | Chromium, Leachable | BDL | 0.02 | ${ m mg/L}$ | 05/08/00 | | Copper, Solid | 99 | 0.20 | mg/kg | 05/05/00 | | Lead, Solid | 48 | 1.0 | mg/kg | 05/05/00 | | Tin, Leachable | BDL | 0.01 | ${ m mg/L}$ | 05/08/00 | | EP Toxicity Leaching Procedure | Completed | | | 05/03/00 | | TCLP for Volatile Organic Compounds | Completed | | | 05/01/00 | | Volatile Organic Compounds, Leachable | , | | | • | | Trichloroethylene | 0.70 | 0.50 | ug/L | 05/10/00 | Location Collected: MacDermid, Inc., 526 Huntingdon Ave, Waterbury, CT Date Sample Collected: 04/27/00 Sample Description: B013B/Solder Strip EAS Sample Number: 00040396-06 LIMS ID Number: AB04907 Date Sample Received: 04/28/00 | • | | Detection | | Analysis | |---------------------------------------|----------------|-----------|-------------|----------| | Parameter | Data | Limit | Units | Date | | Cadmium, Leachable | 0.0061 | 0.005 | mg/L | 05/08/00 | | Cadmium, Solid | 13 | 0.10 | mg/kg | 05/05/00 | | Chromium, Leachable | BDL | 0.02 | ${ t mg/L}$ | 05/08/00 | | Copper, Solid | 86 | 0.20 | mg/kg | 05/05/00 | | Lead, Solid | 51 | 1.0 | mg/kg | 05/05/00 | | Tin, Leachable | 0.027 | 0.01 | ${ m mg/L}$ | 05/08/00 | | EP Toxicity Leaching Procedure | Completed | | | 05/03/00 | | TCLP for Volatile Organic Compounds | Completed | • | | 05/01/00 | | Volatile Organic Compounds, Leachable | • | | | | | Trichloroethylene | 1.7 | 0.50 | ug/L | 05/09/00 | | Tetrachloroethylene | \mathtt{BDL} | 0.50 | ug/L | 05/09/00 | Location Collected: MacDermid, Inc., 526 Huntingdon Ave, Waterbury, CT Date Sample Collected: 04/27/00 Sample Description: B014A/Solder Strip EAS Sample Number: 00040396-07 LIMS ID Number: AB04908 Date Sample Received: 04/28/00 | | | Detection | | Analysis | |---------------------------------------|----------------|-----------|-------------|----------| | Parameter | Data | Limit | Units | Date | | Cadmium, Leachable | 0.0075 | 0.005 | mg/L | 05/08/00 | | Cadmium, Solid | 8.2 | 0.10 | mg/kg | 05/05/00 | | Chromium, Leachable | \mathtt{BDL} | 0.02 | ${ m mg/L}$ | 05/08/00 | | Copper, Solid | 72 | 0.20 | mg/kg | 05/05/00 | | Lead, Solid | 40 | 1.0 | mg/kg | 05/05/00 | | Tin, Leachable | BDL | 0.01 | mg/L | 05/08/00 | | EP Toxicity Leaching Procedure | Completed | | | 05/03/00 | | TCLP for Volatile Organic Compounds | Completed | • | | 05/01/00 | | Volatile Organic Compounds, Leachable | | • | | | | Trichloroethylene | 5.2 | 0.50 | ug/L | 05/10/00 | Location Collected: MacDermid, Inc., 526 Huntingdon Ave, Waterbury, CT Date Sample Collected: 04/27/00 Sample Description: B014B/Solder Strip EAS Sample Number: 00040396-08 LIMS ID Number: AB04909 Date Sample Received: 04/28/00 Client Project Number: MAC0028.RC | | | Detection | | Analysis | |---------------------------------------|----------------|-----------|-------------|----------| | Parameter | Data | Limit | Units | Date | | Cadmium, Leachable | 0.0067 | 0.005 | mg/L | 05/08/00 | | Cadmium, Solid | 21 | 0.10 | mg/kg | 05/05/00 | | Chromium, Leachable | BDL | 0.020 | mg/L | 05/02/00 | | Copper, Solid | 150 | 0.20 | mg/kg | 05/05/00 | | Lead, Solid | 60 | 1.0 | mg/kg | 05/05/00 | | Tin, Leachable | BDL | 0.01 | ${ m mg/L}$ | 05/08/00 | | EP Toxicity Leaching Procedure | Completed | • | | 05/03/00 | | TCLP for Volatile Organic Compounds | Completed | | | 05/02/00 | | Volatile Organic Compounds, Leachable | | | | | | Trichloroethylene | 5.5 | 0.50 | ug/L | 05/09/00 | | Tetrachloroethylene | \mathtt{BDL} | 0.50 | ug/L | 05/09/00 | Location Collected: MacDermid, Inc., 526 Huntingdon Ave, Waterbury, CT Date Sample Collected: 04/27/00 Sample Description: B015A/Solder Strip EAS Sample Number: 00040396-09 LIMS ID Number: AB04910 Date Sample Received: 04/28/00 Client Project Number: MAC0028.RC | | | Detection | | Analysis | |---------------------------------------|----------------|-----------|-------------|----------| | Parameter | Data | Limit | Units | Date | | Cadmium, Leachable | 0.006 | 0.005 | mg/L | 05/08/00 | | Cadmium, Solid | 15 | 0.10 | mg/kg | 05/05/00 | | Chromium, Leachable | \mathtt{BDL} | 0.02 | ${ m mg/L}$ | 05/08/00 | | Copper, Solid | 560 | 0.20 | mg/kg | 05/05/00 | | Lead, Solid | 61 | 1.0 | mg/kg | 05/05/00 | | Tin, Leachable | 0.10 | 0.01 | mg/L | 05/08/00 | | EP Toxicity Leaching Procedure | Completed | | | 05/03/00 | | TCLP for Volatile Organic Compounds | Completed | | , | 05/02/00 | | Volatile Organic Compounds, Leachable | | | | | | Trichloroethylene | 18 | 0.50 | ug/L | 05/09/00 | | Tetrachloroethylene | BDL | 0.50 | ug/L | 05/09/00 | Location Collected: MacDermid, Inc., 526 Huntingdon Ave, Waterbury, CT Date Sample Collected: 04/27/00 Sample Description: B015B/Solder Strip EAS Sample Number: 00040396-10 LIMS ID Number: AB04911 Date Sample Received: 04/28/00 Client Project Number: MAC0028.RC | | | Detection | | Analysis | |---------------------------------------|----------------|-----------|-------------|-------------| | Parameter | Data | Limit | Units | <u>Date</u> | | Cadmium, Leachable | 0.0067 | 0.005 | mg/L | 05/08/00 | | Cadmium, Solid | 16 | 0.10 | mg/kg | 05/05/00 | | Chromium, Leachable | \mathtt{BDL} | 0.02 | ${ m mg/L}$ | 05/08/00 | | Copper, Solid | 380 | 0.20 | mg/kg | 05/05/00 | | Lead, Solid | 83 | 1.0 | mg/kg | 05/05/00 | | Tin, Leachable | BDL | 0.01 | ${ m mg/L}$ | 05/08/00 | | EP Toxicity Leaching Procedure | Completed | • | | 05/03/00 | | TCLP for Volatile Organic Compounds | Completed | | | 05/02/00 | | Volatile Organic Compounds, Leachable | | | | | | Trichloroethylene | 18 | 0.50 | ug/L | 05/09/00 | |
Tetrachloroethylene | BDL | 0.50 | ug/L | 05/09/00 | Location Collected: MacDermid, Inc., 526 Huntingdon Ave, Waterbury, CT Date Sample Collected: 04/27/00 Sample Description: B016A/Solder Strip EAS Sample Number: 00040396-11 LIMS ID Number: AB04912 Date Sample Received: 04/28/00 Client Project Number: MAC0028.RC | | | Detection | | Analysis | |---------------------------------------|----------------|-----------|-------------|----------| | Parameter | Data | Limit | Units | Date | | Cadmium, Leachable | 0.0054 | 0.005 | mg/L | 05/08/00 | | Cadmium, Solid | 18 | 0.10 | mg/kg | 05/05/00 | | Chromium, Leachable | BDL | 0.02 | mg/L | 05/08/00 | | Copper, Solid | 210 | 0.20 | mg/kg | 05/05/00 | | Lead, Solid | 220 | 1.0 | mg/kg | 05/05/00 | | Tin, Leachable | 0.015 | 0.01 | ${ m mg/L}$ | 05/08/00 | | EP Toxicity Leaching Procedure | Completed | | | 05/03/00 | | TCLP for Volatile Organic Compounds | Completed | | | 05/04/00 | | Volatile Organic Compounds, Leachable | | | | | | Trichloroethylene | 39 | 0.50 | ug/L | 05/09/00 | | Tetrachloroethylene | \mathtt{BDL} | 0.50 | ug/L | 05/09/00 | Location Collected: MacDermid, Inc., 526 Huntingdon Ave, Waterbury, CT Date Sample Collected: 04/27/00 Sample Description: B016B/Solder Strip EAS Sample Number: 00040396-12 LIMS ID Number: AB04913 Date Sample Received: 04/28/00 Client Project Number: MAC0028.RC | | • | Analysis | | | |---------------------------------------|----------------|----------|-------------|----------| | Parameter | <u>Data</u> | Limit | Units | Date | | Cadmium, Leachable | 0.015 | 0.005 | mg/L | 05/08/00 | | Cadmium, Solid | 14 | 0.10 | mg/kg | 05/05/00 | | Chromium, Leachable | \mathtt{BDL} | 0.02 | ${ m mg/L}$ | 05/08/00 | | Copper, Solid | 110 | 0.20 | mg/kg | 05/05/00 | | Lead, Solid | 95 | 1.0 | mg/kg | 05/05/00 | | Tin, Leachable | 0.018 | 0.01 | ${ m mg/L}$ | 05/08/00 | | EP Toxicity Leaching Procedure | Completed | l , | | 05/03/00 | | TCLP for Volatile Organic Compounds | Completed | Į | | 05/04/00 | | Volatile Organic Compounds, Leachable | | * | | | | Trichloroethylene | 14 | 0.50 | ug/L | 05/09/00 | | Tetrachloroethylene | \mathtt{BDL} | 0.50 | ug/L | 05/09/00 | Location Collected: MacDermid, Inc., 526 Huntingdon Ave, Waterbury, CT Date Sample Collected: 04/28/00 Sample Description: B017A/Solder Strip EAS Sample Number: 00040396-13 LIMS ID Number: AB04914 Date Sample Received: 04/28/00 Client Project Number: MAC0028.RC | | | Detection | | Analysis | |---------------------------------------|----------------|-----------|-------------|----------| | Parameter | Data | Limit | Units | Date | | Cadmium, Leachable | \mathtt{BDL} | 0.005 | mg/L | 05/08/00 | | Cadmium, Solid | 15 | 0.10 | mg/kg | 05/05/00 | | Chromium, Leachable | 0.033 | 0.02 | ${ m mg/L}$ | 05/08/00 | | Copper, Solid | 210 | 0.20 | mg/kg | 05/05/00 | | Lead, Solid | 310 | 1.0 | mg/kg | 05/05/00 | | Tin, Leachable | \mathtt{BDL} | 0.01 | ${ m mg/L}$ | 05/08/00 | | EP Toxicity Leaching Procedure | Completed | | | 05/03/00 | | TCLP for Volatile Organic Compounds | Completed | | | 05/04/00 | | Volatile Organic Compounds, Leachable | | | | | | Trichloroethylene | 15 | 0.50 | ug/L | 05/10/00 | Location Collected: MacDermid, Inc., 526 Huntingdon Ave, Waterbury, CT Date Sample Collected: 04/28/00 Sample Description: B017B/Solder Strip EAS Sample Number: 00040396-14 LIMS ID Number: AB04915 Date Sample Received: 04/28/00 Client Project Number: MAC0028.RC | | | Detection | | Analysis | |---------------------------------------|----------------|-----------|-------------|----------| | Parameter | <u>Data</u> | Limit | Units | Date | | Cadmium, Leachable | 0.016 | 0.005 | mg/L | 05/08/00 | | Cadmium, Solid | 36 | 0.10 | mg/kg | 05/05/00 | | Chromium, Leachable | \mathtt{BDL} | 0.02 | ${ m mg/L}$ | 05/08/00 | | Copper, Solid | 470 | 0.20 | mg/kg | 05/05/00 | | Lead, Solid | 150 | 1.0 | mg/kg | 05/05/00 | | Tin, Leachable | 0.032 | 0.01 | ${ m mg/L}$ | 05/08/00 | | EP Toxicity Leaching Procedure | Completed | | | 05/03/00 | | TCLP for Volatile Organic Compounds | Completed | | | 05/04/00 | | Volatile Organic Compounds, Leachable | • | | | | | Trichloroethylene | 20 | 0.50 | ug/L | 05/09/00 | | Tetrachloroethylene | BDL | 0.50 | ug/L | 05/09/00 | Location Collected: MacDermid, Inc., 526 Huntingdon Ave, Waterbury, CT Date Sample Collected: 04/28/00 Sample Description: B018A/Solder Strip EAS Sample Number: 00040396-15 LIMS ID Number: AB04916 Date Sample Received: 04/28/00 Client Project Number: MAC0028.RC | • | | Analysis | | | |---------------------------------------|----------------|----------|-------------|----------| | Parameter | Data | Limit | Units | Date | | Cadmium, Leachable | BDL | 0.005 | ${ m mg/L}$ | 05/08/00 | | Cadmium, Solid | 4.3 | 0.10 | mg/kg | 05/05/00 | | Chromium, Leachable | BDL | 0.02 | ${ t mg/L}$ | 05/08/00 | | Copper, Solid | 43 | 0.20 | mg/kg | 05/05/00 | | Lead, Solid | 44 | 1.0 | mg/kg | 05/05/00 | | Tin, Leachable | BDL | 0.01 | mg/L | 05/08/00 | | EP Toxicity Leaching Procedure | Completed | | | 05/03/00 | | TCLP for Volatile Organic Compounds | Completed | | | 05/08/00 | | Volatile Organic Compounds, Leachable | | | | | | Trichloroethylene | \mathtt{BDL} | 0.50 | ug/L | 05/10/00 | Location Collected: MacDermid, Inc., 526 Huntingdon Ave, Waterbury, CT Date Sample Collected: 04/28/00 Sample Description: B018A/Solder Strip EAS Sample Number: 00040396-15 LIMS ID Number: AB04916 Date Sample Received: 04/28/00 Client Project Number: MAC0028.RC | • | | Analysis | | | |---------------------------------------|----------------|----------|--------------|----------| | Parameter | Data | Limit | Units | Date | | Cadmium, Leachable | BDL | 0.005 | ${ m mg/L}$ | 05/08/00 | | Cadmium, Solid | 4.3 | 0.10 | mg/kg | 05/05/00 | | Chromium, Leachable | \mathtt{BDL} | 0.02 | mg/L | 05/08/00 | | Copper, Solid | 43 | 0.20 | mg/kg | 05/05/00 | | Lead, Solid | 44 | 1.0 | ${ m mg/kg}$ | 05/05/00 | | Tin, Leachable | BDL | 0.01 | ${\tt mg/L}$ | 05/08/00 | | EP Toxicity Leaching Procedure | Completed | l , | | 05/03/00 | | TCLP for Volatile Organic Compounds | Completed | ł | - | 05/08/00 | | Volatile Organic Compounds, Leachable | | | | | | Trichloroethylene | \mathtt{BDL} | 0.50 | ug/L | 05/10/00 | Location Collected: MacDermid, Inc., 526 Huntingdon Ave, Waterbury, CT Date Sample Collected: 04/28/00 Sample Description: B018B/Solder Strip EAS Sample Number: 00040396-16 LIMS ID Number: AB04917 Date Sample Received: 04/28/00 Client Project Number: MAC0028.RC | | | Analysis | | | |---------------------------------------|-----------|----------|-------------|----------| | Parameter | Data | Limit | Units | Date | | Cadmium, Leachable | 0.0083 | 0.005 | mg/L | 05/08/00 | | Cadmium, Solid | 3.6 | 0.10 | mg/kg | 05/05/00 | | Chromium, Leachable | 0.024 | 0.02 | ${ m mg/L}$ | 05/08/00 | | Copper, Solid | 52 | 0.20 | mg/kg | 05/05/00 | | Lead, Solid | 20 | 1.0 | mg/kg | 05/05/00 | | Tin, Leachable | 0.032 | 0.01 | ${ m mg/L}$ | 05/08/00 | | EP Toxicity Leaching Procedure | Completed | | | 05/03/00 | | TCLP for Volatile Organic Compounds | Completed | | | 05/08/00 | | Volatile Organic Compounds, Leachable | | | | | | Trichloroethylene | 4.2 | 0.50 | ug/L | 05/10/00 | Location Collected: MacDermid, Inc., 526 Huntingdon Ave, Waterbury, CT Date Sample Collected: 04/28/00 Sample Description: B018B/Solder Strip EAS Sample Number: 00040396-16 LIMS ID Number: AB04917 Date Sample Received: 04/28/00 Client Project Number: MAC0028.RC | | | Detection | | Analysis | |---------------------------------------|-----------|-----------|-----------------|----------| | Parameter | Data | Limit | Units | Date | | Cadmium, Leachable | 0.0083 | 0.005 | ${ m mg/L}$ | 05/08/00 | | Cadmium, Solid | 3.6 | 0,10 | mg/kg | 05/05/00 | | Chromium, Leachable | 0.024 | 0.02 | ${\sf mg/L}$ | 05/08/00 | | Copper, Solid | 52 | 0.20 | mg/kg | 05/05/00 | | Lead, Solid | 20 | 1.0 | mg/kg | 05/05/00 | | Tin, Leachable | 0.032 | 0.01 | $\mathrm{mg/L}$ | 05/08/00 | | EP Toxicity Leaching Procedure | Completed | | | 05/03/00 | | TCLP for Volatile Organic Compounds | Completed | | | 05/08/00 | | Volatile Organic Compounds, Leachable | | | | | | Trichloroethylene | 4.2 | 0.50 | ug/L | 05/10/00 | Location Collected: MacDermid, Inc., 526 Huntingdon Ave, Waterbury, CT Date Sample Collected: 04/27/00 Sample Description: B019A/Solder Strip EAS Sample Number: 00040396-17 LIMS ID Number: AB04918 Date Sample Received: 04/28/00 Client Project Number: MAC0028.RC | | | Detection | | Analysis | |--------------------------------|-----------|-----------|--------------|----------| | Parameter | Data | Limit | Units | Date | | Cadmium, Leachable | 0.02 | 0.005 | ${\tt mg/L}$ | 05/08/00 | | EP Toxicity Leaching Procedure | Completed | ł | | 05/03/00 | Location Collected: MacDermid, Inc., 526 Huntingdon Ave, Waterbury, CT Date Sample Collected: 04/27/00 Sample Description: B020A/Solder Strip EAS Sample Number: 00040396-18 LIMS ID Number: AB04919 Date Sample Received: 04/28/00 | | | Analysis | | | |--------------------------------|----------|----------|-------------|----------| | Parameter | Data | Limit | Units | Date | | Cadmium, Leachable | 0.04 | 0.005 | ${ m mg/L}$ | 05/08/00 | | Cadmium, Solid | 83 | 0.10 | mg/kg | 05/09/00 | | Nickel, Solid | 360 | 0.40 | mg/kg | 05/05/00 | | EP Toxicity Leaching Procedure | Complete | d | | 05/03/00 | Location Collected: MacDermid, Inc., 526 Huntingdon Ave, Waterbury, CT Date Sample Collected: 04/27/00 Sample Description: B021A/Solder Strip EAS Sample Number: 00040396-19 LIMS ID Number: AB04920 Date Sample Received: 04/28/00 Client Project Number: MAC0028.RC | | • | Analysis | | | |--------------------------------|----------|----------|-------------|----------| | Parameter | Data | Limit | Units | Date | | Cadmium, Leachable | 0.37 | 0.005 | ${ m mg/L}$ | 05/08/00 | | Cadmium, Solid | 75 | 0.10 | mg/kg | 05/09/00 | | Nickel, Solid | 450 | 0.40 | mg/kg | 05/05/00 | | EP Toxicity Leaching Procedure | Complete | d
| | 05/03/00 | Location Collected: MacDermid, Inc., 526 Huntingdon Ave, Waterbury, CT Date Sample Collected: 04/27/00 Sample Description: B022A/Solder Strip EAS Sample Number: 00040396-20 LIMS ID Number: AB04921 Date Sample Received: 04/28/00 Client Project Number: MAC0028.RC | | • | Detection | 1 | Analysis | |--------------------------------|----------|-----------|-------|-------------| | Parameter | Data | Limit | Units | <u>Date</u> | | Cadmium, Leachable | 0.029 | 0.005 | mg/L | 05/08/00 | | Cadmium, Solid | 79 | 0.10 | mg/kg | 05/09/00 | | Nickel, Solid | 320 | 0.40 | mg/kg | 05/05/00 | | EP Toxicity Leaching Procedure | Complete | d | | 05/03/00 | Location Collected: MacDermid, Inc., 526 Huntingdon Ave, Waterbury, CT Date Sample Collected: 04/27/00 Sample Description: B024A/Solder Strip EAS Sample Number: 00040396-21 LIMS ID Number: AB04922 Date Sample Received: 04/28/00 | | | Analysis | | | |--------------------------------|----------|----------|-------|----------| | Parameter | Data | Limit | Units | Date | | Cadmium, Leachable | 0.012 | 0.005 | mg/L | 05/08/00 | | Cadmium, Solid | -58 | 0.10 | mg/kg | 05/09/00 | | Nickel, Solid | 110 | 0.40 | mg/kg | 05/05/00 | | EP Toxicity Leaching Procedure | Complete | d | | 05/03/00 | Location Collected: MacDermid, Inc., 526 Huntingdon Ave, Waterbury, CT Date Sample Collected: 04/27/00 Sample Description: W001/Trip Blank EAS Sample Number: 00040396-22 LIMS ID Number: AB04923 Date Sample Received: 04/28/00 | · | • | Detection | | Analysis | |-----------------------------------|----------------|-----------|-------------|----------| | Parameter | Data | Limit | Units | Date | | Cadmium, Water | BDL | 0.005 | mg/L | 05/05/00 | | Copper, Water | \mathtt{BDL} | 0.01 | mg/L | 05/05/00 | | Lead, Water | \mathtt{BDL} | 0.05 | ${ m mg/L}$ | 05/05/00 | | Nickel, Water | BDL | 0.02 | ${ m mg/L}$ | 05/05/00 | | Volatile Organic Compounds, Water | | | | | | Trichloroethylene | BDL | 0.50 | ug/L | 05/09/00 | | Tetrachloroethylene | \mathtt{BDL} | 0.50 | ug/L | 05/09/00 | Location Collected: MacDermid, Inc., 526 Huntingdon Ave, Waterbury, CT Date Sample Collected: 04/27/00 Sample Description: W002/Equipment Blank EAS Sample Number: 00040396-23 LIMS ID Number: AB04924 Date Sample Received: 04/28/00 Client Project Number: MAC0028.RC | | | Detection | 1 | Analysis | |-----------------------------------|----------------|-----------|--------------|----------| | Parameter | Data | Limit | Units | Date | | Cadmium, Water | BDL | 0.005 | mg/L | 05/05/00 | | Copper, Water | 0.01 | 0.01 | ${ m mg/L}$ | 05/05/00 | | Lead, Water | \mathtt{BDL} | 0.05 | ${ m mg/L}$ | 05/05/00 | | Nickel, Water | \mathtt{BDL} | 0.02 | $_{ m mg/L}$ | 05/05/00 | | Volatile Organic Compounds, Water | | | | | | Trichloroethylene | BDL | 0.50 | ug/L | 05/09/00 | | Tetrachloroethylene | \mathtt{BDL} | 0.50 | ug/L | 05/09/00 | Location Collected: MacDermid, Inc., 526 Huntingdon Ave., Waterbury, CT Date Sample Collected: 04/27/00 Sample Description: B023A/Solder Strip EAS Sample Number: 00040396-24 LIMS ID Number: AB05036 Date Sample Received: 05/02/00 Client Project Number: MAC0028.RC | | | Analysis | | | |--------------------------------|----------|----------|-------------|----------| | Parameter | Data | Limit | Units | Date | | Cadmium, Leachable | 0.011 | 0.005 | ${ m mg/L}$ | 05/08/00 | | Cadmium, Solid | 18 | 0.10 | mg/kg | 05/09/00 | | Nickel, Solid | 130 | 0.40 | mg/kg | 05/05/00 | | EP Toxicity Leaching Procedure | Complete | d | | 05/03/00 | EAS Project Number: 00040396 Location Collected: MacDermid, Inc., 526 Huntingdon Ave, Waterbury, CT # **EAS** Certifications: Connecticut Certified Laboratory Number: PH 0558 Massachusetts Certified Laboratory Number: M-CT020 Maine Certified Laboratory Number: CT 020 New Jersey Certified Laboratory Number: 46647 New York Certified Laboratory Number: 10916 Rhode Island Certified Number: 139 ### The enclosed analyses were conducted in accordance with: - 1. APHA Standard Methods for the Examination of Water and Wastewater, 18th Edition, 1992 - 2. Clean Water Act, List of Approved Test Procedures, 40 CFR - 3. EPA Test Methods for the Evaluation of solid Waste, SW-846, 3rd Edition, January 1998 HRP Associates, Inc. 167 New Britain Avenue # **HRP** Sheet / | Place & Address of (| Collection $\eta \eta$ | ar Dran | 110/12 | ر | | Sampler | s Name (Sign | ature) | | | 7 | |---|------------------------|-------------------|-----------------|-------------|---------------|----------------|--------------|------------------|-----------------|------------------------|-----------| | 526 HUNTINGOI | ~ AVE | WATE | LBURY | , CONNECT | ICUT | | / h | mf a | Chin | -8 | | | Sample Samp | le Location | Container
Type | Total
Volume | Preservativ | re | Date | Time | Sam | ple Matrix | | Remarks | | CC 010 Fini | n. 570K. | G | 8 02 | CCOL | 9 | 56 00 | AM | Conc | RETE | CH | IP SAMPL | | 001 Nm | PI | 6 | 805 | SOOL | W. | 26 | #En | Son | L | SUR | FACE + | | 002 Nm | PZ | 6 | 805 | GOOL | * | ALLA . | 1 | 501 | L | SUR | LFALE (| | BOOTA Sound | R SIRIP. | 6 | 862 | Scol | 4 | 19 N | gAm | Soil | | 2'B | ELOW | | BOIJA SOLD | ca Steip | 6 | 807 | Cool | 4 | 27 00 | AM | Soil | | 502 | FACE . | | | L STEIP | <u>G</u> | 802 | Cove | 4) | 27 06 | Ar | 501 | | <u> </u> | BELOW | | | | G | 802 | COOL | 4 | 27/10 | PM | 5011 | <u> </u> | SUL | FACE | | · | en Silip | G | 805 | COOL | 14 | 23 00 | fr | 5016 | | | SELOW | | BOISA SUN | 2 51217 | G | 80} | cool | 19 | 7.7 00 | Pn | SOIL | | SUR | FACE | | | | - | 1 | | | | - \ / | | | | <u> </u> | | Relinquished By (Sign | | how | 400 | | Received By (| | #- | 1 M | | | Time /: 3 | | Relinquished By (Sign | | | | | Received By (| | t J | · Halley | Date 4-2 | | Time /7:5 | | | | | | | | | | | | | | | Name & Address of L | aboratory: | EA | 3 CAB | BUFATURY | (| | TERCIAL | 55/ | MIDAL | BLAY, | CT | | Name & Address of L | aboratory: | | | | | Sample | מו | | T | -BLAY, | | | | aboratory: | CCO | | | | Sample | | B013 B | BOITA | BUIY B | | | | | | | | | Sample | מו | | T | Bu 14 B | B015 A | | Parameters | | | 10 00 | 1 601 | 800 | Sample
7A E | מו | B013 B
X | T | T | | | Parameters d, LFACHATE | | | | 1 601 | 800 | Sample
7A E | 10
S013 A | B013 B
X
X | BOIYA | Bu 14 B | B015 A | | Parameters d, LEACHATE d, SOLID T, LEACHATE LU, SOLID | | | 10 00 | 1 601 | 800 | Sample
7A E | 10
S013 A | B013 B
X | BOIYA | Bu 14 B
Y
X
X | B015 A | | Parameters d, LEACHATE d, SOLID T, LEACHATE LU, SOLID | | | 10 00 | 1 601 | 800 | Sample
7A E | 10
S013 A | B013 B
X
X | BOIYA | Be14 B X | B015 A | | Parameters d, LEACHATE d, SOLID C, LEACHATE | | | 10 00 | 1 601 | 800 | Sample
7A E | 10
S013 A | B013 B
X
X | BOIY A X Y X | Bu 14 B
Y
X
X | B015 A | | Parameters Id, LEACHATE Id, SOLID IT, LEACHATE LU, SOLID LI, SOLID | | | 10 00 | 1 601 | 800 | Sample
7A E | 10
S013 A | B013 B
X
X | BOIY A X Y X | Bu 14 B
Y
X
X | B015 A | | Parameters A, LFACHATE A, SOLID C, LEACHATE U, SOLID A, SOLID | i Saus | | 10 00 | 1 601 | 800 | Sample
7A E | 10
S013 A | B013 B
X
X | BOIY A X Y X | Bu 14 B
Y
X
X | B015 A | | Parameters A, LFACHATE A, SOLID C, LEACHATE U, SOLID A, SOLID A, SOLID A, SOLID A, SOLID | Sein
(1444) | CC 0 | 10 00 | 1 601 | 800 | Sample
7A E | 10
S013 A | B013 B
X
X | BOIY A X Y X | Bu 14 B
Y
X
X | B015 A | | Parameters Id, LEACHATE Id, SOLID IV, LEACHATE IV, SOLID IN, SOLID IN, LEACHATE ELECTRICAL LICHLERDETH TELE | Sein
(1444) | CC 0 | 10 00 | 1 601 | 800 | Sample
7A E | 10
S013 A | B013 B
X
X | BOIY A X Y X | Bu 14 B
Y
X
X | B015 A | | Parameters Id, LEACHATE Id, SOLID IV, LEACHATE IV, SOLID IN, SOLID IN, LEACHATE ELECTRICAL LICHLERDETH TELE | Sein
(1444) | CC 0 | 10 00 | 1 601 | 800 | Sample
7A E | 10
S013 A | B013 B
X
X | BOIY A X Y X | Bu 14 B
Y
X
X | B015 A | | Parameters Id, LEACHATE Id, SOLID IV, LEACHATE IV, SOLID IN, SOLID IN, LEACHATE ELECTRICAL LICHLERDETH TELE | Sein
(1444) | CC 0 | 10 00 | 1 601 | 800 | Sample
7A E | 10
S013 A | B013 B
X
X | BOIY A X Y X | Bu 14 B
Y
X
X | B015 A | | Parameters Id, LEACHATE Id, SOLID IV, LEACHATE IV, SOLID IN, SOLID IN, LEACHATE ELECTRICAL LICHLERDETH TELE | Sein
(1444) | CC 0 | 10 00 | 1 601 | 800 | Sample
7A E | 10
S013 A | B013 B
X
X | BOIY A X Y X | Bu 14 B
Y
X
X | B015 A | HRP Associates, Inc. 167 New Britain Avenue Plainville, CT 06062 Phone: \860-793-6899 # HRP Sheet Z of Job Number MAC 0028, EC | Sample Sample 1 | | ontainer | Total | | ~~ EC TIO | Da | te . | Time | San | ple Matrix | | ?emarks | |--------------------------------|--|-------------------------|---------------|-----------|-----------|--------------|--------------|-------------|--------------|-------------|-------------|-------------| | 1.0. | | Туре | Volume | | | | | | | | | , combined | | 396-10 | | | | | | | | | | | | | | BOISB SOLDER | Sieir. (| | 502 | C | OUL | 4/2 | | DW | |) L | | ELIW | | BOILD A SOLDEL | STLIP. (| | 502 | | ODL | 11 | 7 00 | | + | 012 | | FACE | | BO16 B SOLDER | STRIP (| | 507 | | DUL | | 1/10 | fm | | 51 L | | BELOW | | 3017 A SOLDER | | L. | 502 | | WL | 14/28 | | 10 Am | | שוט | | FACE | | 3017 B Solver | | | 502 | | UOL | 1 3 | 00 | 7) A P | | DIL | | 3ELUW | | 3018 A SOLDER | | | 502 | | 100 | 475 | 1 | 11 4 m | | | | FACE | | 3018 B Scious
BO19 A Soiner | | | 502 | | soc | 4)25 | 4 | Am | 50 | | | ELOW | | BOZO A SOLDE | | | 502 | | ひし | 7 | 700 | V.W | | yL/core | | e suring | | Relinquished By (Signatur | | 1 00 | | | | ed By (Sign | لنبك | | 1.1
 | 27 col | | | Relinquished By (Signatu | | | | | | ed By (Sign | | | Mell | Date 4-2 | | Time /7'55 | | Name & Address of Labo | oratory: | EAS I | ABUCA | 7741 | Cn | nmer | CIAC | Sr | 1910 | DLEBUR | | | | Parameters | | | | , 1 | | | Sample | | | | | | | | | BOISB | 8010 | A | B016B | B017 | A | 3017 B | BOISA | BOISB | 8019 | BOZD A | | d, LEALAATE | | X | X | | X | X | | X | X | X | X | X | | d, SOLIP | 1.75
1.75
1.75
1.75
1.75
1.75
1.75
1.75 | X | $\sqrt{\chi}$ | | Χ | X | 7.50
7.50 | Χ | X | X | 1 | X | | r, LEACHATE | | X | X | | X | χ | | X | X | X | | | | U, SOLID | | Χ | X | | Χ | X | | X | X | X | 100 | | | Ph. SOLID | | X | X | | Χ | X | | χ | X | × | | | | ON LEACHATE | | X | X | 323 | X | χ | | <u> </u> | X | X | | 图 | | LICHLORUETH HEN | SOLIA | | | | | | | | | | | | | PICHLIPUETHYLE | Leaunse | <u>X</u> | γ | | <u>χ</u> | Υ | | χ | χ | X | | | | VI, SOLID | | | 4 | | | | 1 | | | | | X | | | | | | | | | - | | | | | 198 | | | | | t 1 2 7 1 | | | | | | | | | | | | | igida Wila
Waliotaka | 11/-2 | | | 4 | <u></u> _ | 3 | | <u>, i</u> | GE LIM | D. #5-27 | 1 ROLA D | D n 2 h | 2 0 . 3 . 9 | | lemarks: LEACHA | | | | 7 | BXICIT | <i>1</i> _/x | 1167 | 700 | े हेण्ट | 9 BOI9 B | 238 B | 24 R | | SOLID: | 11/955 | 4~41 | <u> 4515</u> | | | | | | | | | | | | | | | | STILS | 9 | 1(7) | FL 60% | M4.1 | nike C | HENDEN | 14 | HRP Associates, Inc. 167 New Britain Avenue Plainville, CT 06062 Phone: 860-793-6899 # **HRP** Sheet 3 of 3 Job Number MIC COZ8, &C | Fax: 860-79 | | | | | F CUST | | Project | ivialiayei | RD | , | |--|-------------|----------|-----------------|--------------|--------------------|--|--|--------------------|--------|--------------| | Place & Address of C | ollection / | MAC DERI | mis, la | <u></u> | Sampl | ers Name (Signa | ture) | ~ ^ | | ? | | 526 Hu | UTIN670 | N AVE | WATER | BLRY, C | T | 1 h | m/ l | 4 6 | m D | | | Sample Sample
396-19 | Location C | | otal P
olume | reservative | Date | Time | Samp | ile Matrix | Re | marks | | B021A Solo | 2 51217 | G 8 | oz C | JOL | 4127/00 | Apar | Cou | CARIT | | | | BOZZ A SULDE | 2 STEIP | G 80 | ,1 6 | laci | 4/27/00 | A.A. | | | 101 | - , , | | BOZ3 A SCIDE | à 512112 (| 5 8 | 01 C | 50L | 4/27/00 | nm | Sorg | As f | CA. | U | | BO 24 A SOLDE | A STEIR G | 8 | 01 0 | FOL | 17/27/0 | 1 Ju | ************************************** | | | | | WOOI - TEIP | BLANK P | 6 11 | 801 0 | <i>5</i> 0 L | 412700 | Pmz | WA | TEL | Bu | مټγ_ | | . 1 | BLAK P | 6 11 | Sof C | :wL | 4/27/00 | Pm | WA | TEL | BL | A~K_ | | | F1- | | | | | | 1 | | 1. | | | | | | | | - mag et 1/8 l | | | | | | | 1.00 | | | 8 4 4 7 | | | 13-2 | | | | | | | | | | | | | 5 | | | <u>_</u> € | | Relinquished By (Signa | ture) | Jala | Cent | Receive | ed By (Signature | 1 1 | 41.1 | Date 1/ | Jow Ti | me). | | Relinquished By (Signa | ture) | | | Receive | ed By (Signature | The state of s | - Malle | Date 4-2 | | me 17:5 | | | | | | | ~ | 1000 | 5-0 | 14.0 | | | | Name & Address of La | boratory: | EAS L | MBORAT | DRY | am | めどしこりれし | | אומסוויי | BURY | CI | | Name & Address of La | boratory: | EAS L | ABORA I | ory: | Samp | <i>melcjal</i>
ole ID | .) . , | MIDDLE | BINKY | CI | | | boratory: | | T | | Samp | | -wob2 | שומפוויי | BINEY | CI | | Parameters WWW. | boratory: | BOZIA | BOZZ A | BOBA | Samp | ole ID | | 'IIDDLC | BURY | | | Parameters AMMANAMA Colorb | sboratory: | BOZIA | T | B023 A | Samp | wov 1 | | ''/IDDLC | BURY | | | Parameters AMAMAMA Color Co | boratory: | BOZIA | T | B023 A | Samp | wool X | | '' <i>''I'DDLC</i> | BINEY | | | Parameters Ld, Solid Cr, LEACHAR Cu, Solid | sboratory: | BOZIA | T | B023 A | Samp | wool X Y | W002 | | BURY | | | Parameters Ld, SOLID Cu, SOLID Pb, SOLID | | BOZIA | T | B023 A | Samp | worl X Y Y | W002 | ''/IDDLC | BINEY | | | Parameters Ld, SOL'D Cr, LEACHARE Cu, SOL'D Pb, SOL'D Sn, LEACHARE | | BOZIA | T | B023 A | Samp | wool X Y | W002
X
X
X | | BURY | | | Parameters Co, Solid Cu, Solid Ph, Solid Solid Solid | | BOZIA | T | B023 A | Samp | worl X Y X X | WODZ
Y
X
X
X | "// <i>DDLC</i> | BURY | | | Parameters A, SOLID CU, SOLID PL, SOLID SO, LEACHATE TENERAL EICHLUROETHYLL | | BOZIA | 3022 A | B023 A | Samp
BOZYA
Y | WOVI X Y X X | WODZ
Y
X
X
X | "//DDLC | BINEY | | | Parameters Ld, SOLID CU, SOLID PL, SOLID SOLID SOLID FICH LUROETHYLL VI, SOLID | | BOZIA | B022 1 | B013 A X | Samp | ile ID WOVI Y Y X X | WODZ
Y
X
X
X
X | | BURY | | | Parameters Co, Solid Co, Solid Ph, Solid Solid Coutachate Eich Luroethyll No, Solid Co, Solid Coutachate Coutachate Coutachate Coutachate Coutachate Coutachate | E o Golf P | BOZIA | 3022 A | B023 A | Samp
BOZYA
Y | V X X X X X | WODZ
Y
X
X
X | | BURY | | | Parameters CL, SOLID CL, SOLID Ph, SOLID SN, LEACHATE EICH LUROETHYLL VI, SOLID Td, LEACHATE | E o Golf P | BOZIA | B022 1 | B013 A X | Samp
BOZYA
Y | V X X X X | WODZ
Y
X
X
X
X | | BURY | | | Parameters Co, Solid Co, Solid Ph, Solid Solid Coutachate Eich Luroethyll No, Solid Co, Solid Coutachate Coutachate Coutachate Coutachate Coutachate Coutachate | E o Golf P | BOZIA | B022 1 | B013 A X | Samp
BOZYA
Y | V X X X X X | WODZ
Y
X
X
X
X | | BURY | | | Parameters Cd, Solid Cr, LEACHARE Cu, Solid Pb, Solid Sn, LIACHATE TEICHLUROETHYLL NI, SOLID Cd, LEACHATE | E o Golf P | BOZIA | B022 1 | B013 A X | Samp
BOZYA
Y | V X X X X X | WODZ
Y
X
X
X
X | | BURY | | | Parameters Cd, Solid Cr, LEACHAR Cu, Solid Pb, Solid Sn, LEACHARE | E o Golf P | BOZIA | B022 1 | B013 A X | Samp
BOZYA
Y | V X X X X X | WODZ
Y
X
X
X
X | | BURY | | # APPENDIX H June 13, 2000 Sampling Results e\rdm\rn\rcra closure summary HRP
Associates, Inc. June 21, 2000 MACDERMID, INC. 245 Freight Street Waterbury, CT 06702 Attention: Mr. Greg Strong EAS Project Number: 00060143 Location Collected: 526 Huntingdon Ave, Waterbury, CT Copies of this report and the supporting computer stored data are retained in our files in the event they are required for future reference. Any sample submitted to our laboratory will be retained for a maximum of thirty (30) days from receipt of the report. All analytical data, unless otherwise specified, is reported on a wet weight (as received) basis. Our laboratory is a multi-state Certified Public Health Laboratory, offering a full range of analytical services that include: Water and Wastewater Analysis Hazardous Waste Analysis (RCRA) Full Priority Pollutant Analysis Drinking Water Analysis Laboratory Director Inna Location Collected: 526 Huntingdon Ave, Waterbury, CT Date Sample Collected: 04/27/00 Sample Description: B020B/Solder Strip EAS Sample Number: 00060143-01 LIMS ID Number: AB06689 Date Sample Received: 06/13/00 | | | Detection | | Analysis | |--------------------------------|----------|-----------|-------|----------| | Parameter | Data | Limit | Units | Date | | Cadmium, Leachable | 0.011 | 0.005 | mg/L | 06/16/00 | | Cadmium, Solid | 3.1 | 0.10 | mg/kg | 06/15/00 | | Nickel, Leachable | 0.33 | 0.02 | mg/L | 06/16/00 | | Nickel, Solid | 15 | 0.40 | mg/kg | 06/15/00 | | EP Toxicity Leaching Procedure | Complete | d | | 06/14/00 | Location Collected: 526 Huntingdon Ave, Waterbury, CT Date Sample Collected: 04/27/00 Sample Description: B021B/Solder Strip EAS Sample Number: 00060143-02 LIMS ID Number: AB06690 Date Sample Received: 06/13/00 | | | Detection | | Analysis | |--------------------------------|-----------|-----------|-------------|----------| | Parameter | Data | Limit | Units | Date | | Cadmium, Leachable | 0.0077 | 0.005 | mg/L | 06/16/00 | | Cadmium, Solid | 5.2 | 0.10 | mg/kg | 06/15/00 | | Nickel, Leachable | 0.89 | 0.02 | ${ m mg/L}$ | 06/16/00 | | Nickel, Solid | 25 | 0.40 | mg/kg | 06/15/00 | | EP Toxicity Leaching Procedure | Completed | I | | 06/14/00 | Location Collected: 526 Huntingdon Ave, Waterbury, CT Date Sample Collected: 04/27/00 Sample Description: B022B/Solder Strip EAS Sample Number: 00060143-03 LIMS ID Number: AB06691 Date Sample Received: 06/13/00 | | | Detection | | Analysis | |--------------------------------|----------|-----------|-------|----------| | Parameter | Data | Limit | Units | Date | | Cadmium, Leachable | BDL | 0.005 | mg/L | 06/16/00 | | Cadmium, Solid | 5.1 | 0.10 | mg/kg | 06/15/00 | | Nickel, Leachable | 0.099 | 0.02 | mg/L | 06/16/00 | | Nickel, Solid | 19 | 0.40 | mg/kg | 06/15/00 | | EP Toxicity Leaching Procedure | Complete | d | | 06/14/00 | Location Collected: 526 Huntingdon Ave, Waterbury, CT Date Sample Collected: 04/27/00 Sample Description: B024B/Solder Strip EAS Sample Number: 00060143-04 LIMS ID Number: AB06692 Date Sample Received: 06/13/00 | | | Detection | | Analysis | |--------------------------------|----------|-----------|-------------|----------| | Parameter | Data | Limit | Units | Date | | Cadmium, Leachable | 0.021 | 0.005 | mg/L | 06/16/00 | | Cadmium, Solid | 3.5 | 0.10 | mg/kg | 06/15/00 | | Nickel, Leachable | 0.48 | 0.02 | ${ m mg/L}$ | 06/16/00 | | Nickel, Solid | 30 | 0.40 | mg/kg | 06/15/00 | | EP Toxicity Leaching Procedure | Complete | d | | 06/14/00 | EAS Project Number: 00060143 Location Collected: 526 Huntingdon Ave, Waterbury, CT #### EAS Certifications: Connecticut Certified Laboratory Number: PH 0558 Massachusetts Certified Laboratory Number: M-CT020 Maine Certified Laboratory Number: CT 020 New Jersey Certified Laboratory Number: 46647 New York Certified Laboratory Number: 10916 Rhode Island Certified Number: 139 ### The enclosed analyses were conducted in accordance with: - 1. APHA Standard Methods for the Examination of Water and Wastewater, 18th Edition, 1992 - 2. Clean Water Act, List of Approved Test Procedures, 40 CFR - 3. EPA Test Methods for the Evaluation of solid Waste, SW-846, 3rd Edition, January 1998 HRP Associates, Inc. 167 New Britain Avenue Plainville, CT 06062 # HRP Sheet 3 of 3 Job Number MC 0025, RC Phone: 860-793-6899 CHAIN OF CUSTODY ROM Project Manager Fax: 860-793-6871 MACDERMID, luc Samplers Name (Signature) Place & Address of Collection HUNTINGDON AVE WATERBURY 526 Sample 1.0. 19 Sample Location Container Total Preservative Remarks BOZIA SOLOGE STEN 4/27/20 8 or Am CAUL COUNTIE -Za BULLA SOLDER STEIR 806 cool Am 507 - 74 BUBA SOLDER STELL COUL Am - 24 BU ZY A SOLDER STEIR Um Ö 802 Cibi 1180E Pin P.6 TRIP BLANC BUNK GUL WATER CECL 10 302 WATER EDVIP BLOCK -23 W 202 Himpin John Stall €62 Mile Cherewell 6/13/00 ئن- Date 2/28-00 Time Received By (Signature) Relinquished By (Signature) Received By (Signature) / Relinquished By (Signature) Commercial ST MIDDLEBURY. LABORATORY Name & Address of Laboratory: Sample ID BU22 B ع القط ROLS A ROLYA 10001 302 A BULLA Ä. X d, solid Ż Cr: LEHOUAFE Ä Cu, Soud X r SOLID X X SM. LEACHDIE X X eich wedethyle ic leadyr X W. Sould ¥ ¥ X A X χ X X X X X ETHACHLISCOTHYES TO A THINK X Remarks: CTACHATE: EXTRACTION BY EP TOX WITH BOZZA is Soil Sample in BOZZB Solid: MASS ANALYSIS HRP GATACT: MIKE CHENOWETH T - TCLP Analysis P - Plastic M - Mass Analysis A - Amber Abbreviations: G - Glass #### **APPENDIX I** September 6, 1989 Fingerprint Specification for Spent Solder Stripper e\rdm\m\rcra closure summary # September 6, 1989 MEMO TO: Cherrie Gillis FROM: Ron Redline cc: Alan Bares - Mary Jane Senechal - Marie Orsillo SUBJECT: Fingerprint Sample - Spent Solder Stripper 17507/17595: Schedule C COMPANY: Total Engineering Services CUSTOMER NUMBER: 078573 | TEST | RESULT | SPECIFICATION | |---------------------|------------|---| | l. Appearance | Acceptable | Blue, blue-green, light brown líquid @ 75 F | | 2. Specific Gravity | 1.157 | 1.08 minimum | | 3. pH | 5.1 | 3.5 - 6.0 | | 4. Fluoride | 233.7 g/l | 110 g/l minimum | | 5. Chloride | 910 ppm | 500 ppm maximum | | 6. Copper | 0.50 g/l | 5 g/l maximum | | 7. Lead | 38 ppm . | 50 ppm maximum | | 8. Tin | 46 g/l | 22.5 g/l minimum | | 9. Fluoborates | | 5 ppm maximum | | 10. Iron | 1.0 ppm | 100 ppm maximum | | ll. Nitrates | | 5 ppm maximum | | 12. Nickel | 18 pom | 5 ppm maximum | | | | | 13. Others as listed on generator certification # APPENDIX J August 10, 2000 Sampling Results e\rdm\rn\rcra closure summary HRP Ameriater Inc. September 11, 2000 Client: MACDERMID, INC. 245 Freight Street Waterbury, CT 06702 Attention: Mr. Greg Strong EAS Project Number(s): 00080149 Location Collected: Huntingdon Avenue, Waterbury, CT * Limited sample volume for CC028/NMP. Total sulfide unable to be analyzed. Copies of this report and the supporting computer stored data are retained in our files in the event they are required for future reference. Any sample submitted to our laboratory will be retained for a maximum of thirty (30) days from receipt of the sample. All analytical data, unless otherwise specified, is reported on a wet weight (as received) basis. Our laboratory is a multi-state Certified Public Health Laboratory, offering a full range of analytical services which include: Drinking Water Analysis Water and Wastewater Analysis Hazardous Waste Analysis (RCRA) Full Priority Pollutant Analysis Field Sampling regory C Lawrence Laboratory Director encl. Location Collected: Huntingdon Avenue, Waterbury, CT Date Sample Collected: 08/10/00 Sample Description: CC016/Solder Strip EAS Sample Number: 00080149-01 LIMS ID Number: AB09174 Date Sample Received: 08/10/00 Client Project Number: MAC0030.RC | | | Detection | | Analysis | |-----------------------------------|----------------|-----------|---------|----------| | Parameter | Data | Limit | Units | Date | | Cyanide, Leachable | BDL | 0.15 | mg/L | 08/18/00 | | Cyanide, Solid | BDL | 5.0 | mg/kg | 08/18/00 | | Sulfide-Total, Solid | 28 | 10 | mg/kg | 09/05/00 | | Barium, Leachable | 0.21 | 0.005 | mg/L | 08/17/00 | | Barium, Solid | 22 | 0.10 | mg/kg | 08/14/00 | | Cadmium, Leachable | BDL | 0.005 | mg/L | 08/17/00 | | Cadmium, Solid | 3.3 | 0.10 | mg/kg | 08/14/00 | | Chromium, Leachable | BDL | 0.02 | mg/L | 08/17/00 | | Chromium, Solid | 6.4 | 0.40 | mg/kg | 08/14/00 | | Copper, Leachable | 0.078 | 0.01 | mg/L | 08/17/00 | | Copper, Solid | 31 | 0.20 | mg/kg | 08/14/00 | | Lead, Solid | 1.9 | 1.0 | mg/kg | 08/14/00 | | Lead-Low Level, Leachable | \mathtt{BDL} | 0.005 | mg/L | 08/18/00 | | Nickel, Leachable | 0.051 | 0.02 | mg/L | 08/17/00 | | Nickel, Solid | 5.3 | 0.40 | mg/kg | 08/14/00 | | Sulfide, Leachable | BDL | 1.0 | mg/L | 09/05/00 | | Tin, Leachable | BDL | 0.01 | mg/L | 08/17/00 | | Tin, Solid | 110 | 0.20 | mg/kg | 08/14/00 | | Zinc, Leachable | 0.051 | 0.005 | mg/L | 08/17/00 | | Zinc, Solid | 18 | 0.10 | mg/kg | 08/14/00 | | BNA Extraction, Solid | Completed | | | 08/14/00 | | EP Toxicity Leaching Procedure | Completed | | | 08/14/00 | | Method 8270, Solid | | | | • | | Bis (2-ethylhexyl) phthalate | 660 | 330 | ug/kg | 08/24/00 | | Benzyl Alcohol | BDL | 330 | ug/kg | 08/24/00 | | Volatile Organic Compounds, Solid | | * | | | | Trichlorofluoromethane | BDL | 10 | ug/kg | 08/21/00 | | Acetone | \mathtt{BDL} | 25 | ug/kg | 08/21/00 | | Methylene Chloride | BDL | 10 | ug/kg | 08/21/00 | | 2 -Butanone | BDL | 10 | ug/kg | 08/21/00 | | 1,1,1-Trichloroethane | BDL | 10 | ug/kg | 08/21/00 | | Trichloroethene | \mathtt{BDL} | 10 | ug/kg | 08/21/00 | | 4-Methyl-2-Pentanone | \mathtt{BDL} | 10 | ug/kg | 08/21/00 | | Toluene | \mathtt{BDL} | 10 | , ug/kg | 08/21/00 | | Tetrachoroethylene | \mathtt{BDL} | 10 | ug/kg | 08/21/00 | | Chlorobenzene | BDL | .10 | ug/kg | 08/21/00 | | | | | | | Location Collected: Huntingdon Avenue, Waterbury, CT Date Sample Collected: 08/10/00 Sample Description: CC016/Solder Strip EAS Sample Number: 00080149-01 LIMS ID Number: AB09174 Date Sample Received: 08/10/00 Client Project
Number: MAC0030.RC | Parameter | Data | Detection
Limit | Units | Analysis
Date | |--------------|------|--------------------|-------|------------------| | Ethylbenzene | BDL | 10 | ug/kg | 08/21/00 | | m/p-Xylene | 40 | 10 | ug/kg | 08/21/00 | | 0-Xylene | 16 | 10 | ug/kg | 08/21/00 | | 1,4-Dioxane | BDL | 100 | ug/kg | 08/21/00 | | Isobutanol | BDL | 50 | ug/kg | 08/21/00 | Location Collected: Huntingdon Avenue, Waterbury, CT Date Sample Collected: 08/10/00 Sample Description: CC017/Solder Strip EAS Sample Number: 00080149-02 LIMS ID Number: AB09175 Date Sample Received: 08/10/00 Client Project Number: MAC0030.RC | Parameter | Data | Detection
Limit | Units | Analysis
Date | |-----------------------------------|----------------|--------------------|-------------|------------------| | Cyanide, Leachable | BDL | 0.15 | mg/L | 08/18/00 | | Cyanide, Solid | BDL | 5.0 | mg/kg | 08/18/00 | | Sulfide-Total, Solid | 12 | 10 | mg/kg | 09/05/00 | | Barium, Leachable | 0.19 | 0.005 | mg/L | 08/17/00 | | Barium, Solid | 24 | 0.10 | mg/kg | 08/14/00 | | Cadmium, Leachable | 0.011 | 0.005 | mg/L | .08/17/00 | | Cadmium, Solid | 3.4 | 0.10 | mg/kg | 08/14/00 | | Chromium, Leachable | \mathtt{BDL} | 0.02 | mg/L | 08/17/00 | | Chromium, Solid | 9.6 | 0.40 | mg/kg | 08/14/00 | | Copper, Leachable | 0.34 | 0.01 | mg/L | 08/17/00 | | Copper, Solid | 86 | 0.20 | mg/kg | 08/14/00 | | Lead, Solid | 27 | 1.0 | mg/kg | 08/14/00 | | Lead-Low Level, Leachable | \mathtt{BDL} | 0.005 | mg/L | 08/18/00 | | Nickel, Leachable | 0.07 | 0.02 | mg/L | 08/17/00 | | Nickel, Solid | 8.7 | 0.40 | mg/kg | 08/14/00 | | Sulfide, Leachable | \mathtt{BDL} | 1.0 | mg/L | 09/05/00 | | Tin, Leachable | BDL | 0.01 | ${ m mg/L}$ | 08/17/00 | | Tin, Solid | 34 | 0.20 | mg/kg | 08/14/00 | | Zinc, Leachable | 0.52 | 0.005 | mg/L | 08/17/00 | | Zinc, Solid | 51 | 0.10 | mg/kg | 08/14/00 | | BNA Extraction, Solid | Completed | ·
- | | 08/14/00 | | EP Toxicity Leaching Procedure | Completed | | | 08/14/00 | | Method 8270, Solid | | | | • | | Bis (2-ethylhexyl) phthalate | 1600 | 330 | ug/kg | 08/24/00 | | Benzyl Alcohol | \mathtt{BDL} | 330 | ug/kg | 08/24/00 | | Volatile Organic Compounds, Solid | | | | | | Trichlorofluoromethane | BDL | 10 | ug/kg | 08/21/00 | | Acetone | \mathtt{BDL} | 25 | ug/kg | 08/21/00 | | Methylene Chloride | BDL | 10 | ug/kg | 08/21/00 | | 2 -Butanone | 22 | 10 | ug/kg | 08/21/00 | | 1,1,1-Trichloroethane | BDL | 10 | ug/kg | 08/21/00 | | Trichloroethene | BDL | 10 | ug/kg | 08/21/00 | | 4-Methyl-2-Pentanone | BDL | 10 | ug/kg | 08/21/00 | | Toluene | BDL | 10 | ug/kg | 08/21/00 | | Tetrachoroethylene | BDL | 10 | ug/kg | 08/21/00 | | Chlorobenzene | BDL | 10 | ug/kg | 08/21/00 | | | | | | | Location Collected: Huntingdon Avenue, Waterbury, CT Date Sample Collected: 08/10/00 Sample Description: CC017/Solder Strip EAS Sample Number: 00080149-02 LIMS ID Number: AB09175 Date Sample Received: 08/10/00 Client Project Number: MAC0030.RC | | | Analysis | | | |--------------|----------------|----------|-------|----------| | Parameter | Data | Limit | Units | Date | | Ethylbenzene | 74 | 10 | ug/kg | 08/21/00 | | m/p-Xylene | 270 | 10 | ug/kg | 08/21/00 | | 0-Xylene | 75 | 10 | ug/kg | 08/21/00 | | 1,4-Dioxane | \mathtt{BDL} | 100 | ug/kg | 08/21/00 | | Isobutanol | \mathtt{BDL} | 50 | ug/kg | 08/21/00 | Location Collected: Huntingdon Avenue, Waterbury, CT Date Sample Collected: 08/10/00 Sample Description: CC018/Solder Strip EAS Sample Number: 00080149-03 LIMS ID Number: AB09176 Date Sample Received: 08/10/00 Client Project Number: MAC0030.RC | | | Detection | | Analysis | |-----------------------------------|----------------|-----------|----------|----------| | Parameter | Data | Limit | Units | Date | | Cyanide, Leachable | BDL | 0.15 | mg/L | 08/18/00 | | Cyanide, Solid | \mathtt{BDL} | 5.0 | mg/kg | 08/18/00 | | Sulfide-Total, Solid | BDL | 10 | mg/kg | 09/05/00 | | Barium, Leachable | 0.078 | 0.005 | mg/L | 08/17/00 | | Barium, Solid | 52 | 0.10 | mg/kg | 08/14/00 | | Cadmium, Leachable | BDL | 0.005 | mg/L | 08/17/00 | | Cadmium, Solid | 4.5 | 0.10 | mg/kg | 08/14/00 | | Chromium, Leachable | BDL | 0.02 | mg/L | 08/17/00 | | Chromium, Solid | 19 | 0.40 | mg/kg | 08/14/00 | | Copper, Leachable | 14 | 0.01 | mg/L | 08/17/00 | | Copper, Solid | 980 | 0.20 | mg/kg | 08/14/00 | | Lead, Solid | 73 | 1.0 | mg/kg | 08/14/00 | | Lead-Low Level, Leachable | 0.023 | 0.005 | mg/L | 08/18/00 | | Nickel, Leachable | 0.051 | 0.02 | mg/L | 08/17/00 | | Nickel, Solid | 11 | 0.40 | mg/kg | 08/14/00 | | Sulfide, Leachable | \mathtt{BDL} | 1.0 | mg/L | 09/05/00 | | Tin, Leachable | \mathtt{BDL} | 0.01 | mg/L | 08/17/00 | | Tin, Solid | 640 | 0.20 | mg/kg | 08/14/00 | | Zinc, Leachable | 0.91 | 0.005 | mg/L | 08/17/00 | | Zinc, Solid | 110 | 0.10 | mg/kg | 08/14/00 | | BNA Extraction, Solid | Complete | 1 | | 08/14/00 | | EP Toxicity Leaching Procedure | Completed | | 08/14/00 | | | Method 8270, Solid | • | | | | | Bis (2-ethylhexyl) phthalate | BDL | 330 | ug/kg | 08/24/00 | | Benzyl Alcohol | BDL | 330 | ug/kg | 08/24/00 | | Volatile Organic Compounds, Solid | | | | | | Trichlorofluoromethane | BDL | 10 | ug/kg | 08/21/00 | | Acetone | - BDL | 25 | ug/kg | 08/21/00 | | Methylene Chloride | \mathtt{BDL} | 10 | ug/kg | 08/21/00 | | 2 -Butanone | BDL | 10 . | ug/kg | 08/21/00 | | 1,1,1-Trichloroethane | \mathtt{BDL} | 10 | ug/kg | 08/21/00 | | Trichloroethene | \mathtt{BDL} | 10 | ug/kg | 08/21/00 | | 4-Methyl-2-Pentanone | \mathtt{BDL} | 10 | ug/kg | 08/21/00 | | Toluene | \mathtt{BDL} | 10 | ug/kg | 08/21/00 | | Tetrachoroethylene | BDL | 10 | ug/kg | 08/21/00 | | Chlorobenzene | \mathtt{BDL} | 10 | ug/kg | 08/21/00 | | | | | | | Location Collected: Huntingdon Avenue, Waterbury, CT Date Sample Collected: 08/10/00 Sample Description: CC018/Solder Strip EAS Sample Number: 00080149-03 LIMS ID Number: AB09176 Date Sample Received: 08/10/00 Client Project Number: MAC0030.RC | Parameter | | Detection | | | |--------------|----------------|-----------|-------|----------| | | <u>Data</u> | Limit | Units | Date | | Ethylbenzene | 190 | 10 | ug/kg | 08/21/00 | | m/p-Xylene | 1000 | 10 | ug/kg | 08/21/00 | | 0-Xylene | 390 | 10 | ug/kg | 08/21/00 | | 1,4-Dioxane | 190 | 100 | ug/kg | 08/21/00 | | Isobutanol | \mathtt{BDL} | 50 | ug/kg | 08/21/00 | Location Collected: Huntingdon Avenue, Waterbury, CT Date Sample Collected: 08/10/00 Sample Description: CC019/Solder Strip EAS Sample Number: 00080149-04 LIMS ID Number: AB09177 Date Sample Received: 08/10/00 Client Project Number: MAC0030.RC | Cyanide, Leachable BDL 0.15 mg/L 08/18/00 Cyanide, Solid BDL 5.0 mg/kg 08/18/00 Sulfide-Total, Solid BDL 10 mg/kg 09/05/00 Barium, Leachable 0.22 0.005 mg/L 08/17/00 Barium, Solid 27 0.10 mg/kg 08/14/00 Cadmium, Leachable BDL 0.005 mg/L 08/17/00 Cadmium, Solid 3.2 0.10 mg/kg 08/14/00 Chromium, Leachable BDL 0.02 mg/L 08/17/00 Chromium, Solid 6.7 0.40 mg/kg 08/14/00 Copper, Leachable 0.092 0.01 mg/kg 08/14/00 Copper, Solid 10 0.20 mg/kg 08/14/00 Lead, Solid 14 1.0 mg/kg 08/14/00 Nickel, Leachable BDL 0.005 mg/L 08/14/00 Nickel, Leachable BDL 1.0 mg/kg 08/14/00 T | Parameter | Data | Detection
Limit | Units | Analysis
Date | |--|---------------------------------------|-------------------|--------------------|----------------|------------------| | Cyanide, Solid BDL 5.0 mg/kg 08/18/00 Sulfide-Total, Solid BDL 10 mg/kg 09/05/00 Barium, Leachable 0.22 0.005 mg/L 08/17/00 Barium, Solid 27 0.10 mg/kg 08/14/00 Cadmium, Leachable BDL 0.005 mg/L 08/14/00 Chromium, Solid 3.2 0.10 mg/kg 08/14/00 Chromium, Solid 6.7 0.40 mg/kg 08/14/00 Copper, Leachable 0.092 0.01 mg/L 08/17/00 Copper, Solid 100 0.20 mg/kg 08/14/00 Lead, Solid 14 1.0 mg/kg 08/14/00 Lead-Low Level, Leachable BDL 0.005 mg/L 08/11/00 Nickel, Leachable BDL 0.00 mg/kg 08/11/00 Nickel, Leachable BDL 1.0 mg/kg 08/11/00 Sulfide, Leachable BDL 1.0 mg/kg 08/11/00 | | | | | | |
Sulfide-Total, Solid BDL 10 | e e | | | - | | | Barium, Leachable 0.22 0.005 mg/L 08/17/00 Barium, Solid 27 0.10 mg/kg 08/14/00 Cadmium, Leachable BDL 0.005 mg/L 08/14/00 Cadmium, Solid 3.2 0.10 mg/kg 08/14/00 Chromium, Leachable BDL 0.02 mg/L 08/17/00 Chromium, Solid 6.7 0.40 mg/kg 08/14/00 Copper, Leachable 0.092 0.01 mg/L 08/17/00 Copper, Solid 100 0.20 mg/kg 08/14/00 Lead, Solid 14 1.0 mg/kg 08/14/00 Lead, Solid 14 1.0 mg/kg 08/14/00 Nickel, Leachable BDL 0.005 mg/L 08/18/00 Nickel, Leachable BDL 0.00 mg/kg 08/14/00 Sulfide, Leachable BDL 1.0 mg/kg 08/14/00 Tin, Solid 20 0.01 mg/kg 08/14/00 Zinc, Solid </td <td>=</td> <td></td> <td></td> <td></td> <td></td> | = | | | | | | Barium, Solid Cadmium, Leachable BDL Cadmium, Solid Cadmium, Solid Cadmium, Solid Chromium, Leachable BDL Chromium, Leachable BDL Chromium, Leachable BDL Chromium, Solid Chromium, Solid Chromium, Solid Copper, Leachable Copper, Leachable Copper, Leachable Copper, Solid D0 Copper, Solid D0 Copper, Solid D0 Cadmium, Solid D0 Copper, C0 | | | | = | | | Cadmium, Leachable BDL 0.005 mg/L 08/17/00 Cadmium, Solid 3.2 0.10 mg/kg 08/14/00 Chromium, Leachable BDL 0.02 mg/L 08/17/00 Chromium, Solid 6.7 0.40 mg/kg 08/14/00 Copper, Leachable 0.092 0.01 mg/L 08/17/00 Copper, Solid 100 0.20 mg/kg 08/14/00 Lead, Solid 14 1.0 mg/kg 08/14/00 Lead-Low Level, Leachable BDL 0.005 mg/L 08/18/00 Nickel, Leachable 0.044 0.02 mg/L 08/18/00 Nickel, Solid 8.3 0.40 mg/kg 08/14/00 Sulfide, Leachable BDL 1.0 mg/L 08/17/00 Tin, Leachable BDL 0.01 mg/L 08/17/00 Zinc, Leachable 1.3 0.005 mg/L 08/17/00 Zinc, Leachable 1.3 0.005 mg/L 08/17/00 < | · | | | - | | | Cadmium, Solid 3.2 0.10 mg/kg 08/14/00 Chromium, Leachable BDL 0.02 mg/L 08/17/00 Chromium, Solid 6.7 0.40 mg/kg 08/14/00 Copper, Leachable 0.092 0.01 mg/kg 08/14/00 Copper, Solid 100 0.20 mg/kg 08/14/00 Lead, Solid 14 1.0 mg/kg 08/14/00 Lead-Low Level, Leachable BDL 0.005 mg/L 08/18/00 Nickel, Leachable 0.044 0.02 mg/L 08/11/00 Nickel, Leachable BDL 1.0 mg/kg 08/14/00 Sulfide, Leachable BDL 1.0 mg/L 09/05/00 Tin, Leachable BDL 1.0 mg/kg 08/14/00 Zinc, Solid 270 0.20 mg/kg 08/14/00 Zinc, Solid 200 0.10 mg/kg 08/14/00 EV Toxicity Leaching Procedure Completed 08/14/00 Bis (2-ethylhexyl) phthalate | · | | | | | | Chromium, Leachable BDL 0.02 mg/L 08/17/00 Chromium, Solid 6.7 0.40 mg/kg 08/14/00 Copper, Leachable 0.092 0.01 mg/L 08/17/00 Copper, Solid 100 0.20 mg/kg 08/14/00 Lead, Solid 14 1.0 mg/kg 08/14/00 Lead-Low Level, Leachable BDL 0.005 mg/L 08/18/00 Nickel, Leachable 0.044 0.02 mg/L 08/18/00 Nickel, Leachable BDL 1.0 mg/L 08/17/00 Nickel, Solid 8.3 0.40 mg/kg 08/14/00 Sulfide, Leachable BDL 1.0 mg/L 08/17/00 Tin, Leachable BDL 0.01 mg/L 08/14/00 Zinc, Solid 270 0.20 mg/kg 08/14/00 BNA Extraction, Solid Completed 08/14/00 08/14/00 Method 8270, Solid Bis (2-ethylhexyl) phthalate 110 330 ug/kg 08/24/0 | | | | - | | | Chromium, Solid 6.7 0.40 mg/kg 08/14/00 Copper, Leachable 0.092 0.01 mg/L 08/17/00 Copper, Solid 100 0.20 mg/kg 08/14/00 Lead, Solid 14 1.0 mg/kg 08/14/00 Lead-Low Level, Leachable BDL 0.005 mg/L 08/18/00 Nickel, Leachable 0.044 0.02 mg/L 08/17/00 Nickel, Solid 8.3 0.40 mg/kg 08/14/00 Sulfide, Leachable BDL 1.0 mg/L 09/05/00 Tin, Leachable BDL 0.01 mg/L 08/17/00 Zinc, Solid 270 0.20 mg/kg 08/14/00 BNA Extraction, Solid Completed 08/14/00 08/14/00 EP Toxicity Leaching Procedure Completed 08/14/00 Method 8270, Solid Completed 08/14/00 Bis (2-ethylhexyl) phthalate 1100 330 ug/kg 08/24/00 Benzyl Alcohol BDL 330 <td>· · · · · · · · · · · · · · · · · · ·</td> <td></td> <td></td> <td></td> <td></td> | · · · · · · · · · · · · · · · · · · · | | | | | | Copper, Leachable 0.092 0.01 mg/L 08/17/00 Copper, Solid 100 0.20 mg/kg 08/14/00 Lead, Solid 14 1.0 mg/kg 08/14/00 Lead-Low Level, Leachable BDL 0.005 mg/L 08/18/00 Nickel, Leachable 0.044 0.02 mg/L 08/17/00 Nickel, Solid 8.3 0.40 mg/kg 08/14/00 Sulfide, Leachable BDL 1.0 mg/L 09/05/00 Tin, Leachable BDL 0.01 mg/L 08/17/00 Tin, Solid 270 0.20 mg/kg 08/14/00 Zinc, Leachable 1.3 0.005 mg/L 08/17/00 Zinc, Solid 200 0.10 mg/kg 08/14/00 BNA Extraction, Solid Completed 08/14/00 08/14/00 Wethod 8270, Solid Bis (2-ethylhexyl) phthalate 1100 330 ug/kg 08/24/00 Benzyl Alcohol BDL 330 ug/kg 08/24/00 | | | | - | | | Copper, Solid 100 0.20 mg/kg 08/14/00 Lead, Solid 14 1.0 mg/kg 08/14/00 Lead-Low Level, Leachable BDL 0.005 mg/L 08/18/00 Nickel, Leachable 0.044 0.02 mg/L 08/17/00 Nickel, Solid 8.3 0.40 mg/kg 08/14/00 Sulfide, Leachable BDL 1.0 mg/L 08/17/00 Tin, Leachable BDL 0.01 mg/L 08/17/00 Tin, Solid 270 0.20 mg/kg 08/14/00 Zinc, Leachable 1.3 0.005 mg/L 08/17/00 Zinc, Solid 200 0.10 mg/kg 08/14/00 BNA Extraction, Solid Completed 08/14/00 08/14/00 EP Toxicity Leaching Procedure Completed 08/14/00 08/14/00 Method 8270, Solid BDL 330 ug/kg 08/24/00 Benzyl Alcohol BDL 330 ug/kg 08/24/00 Volatile Organic Co | | | | | | | Lead, Solid 14 1.0 mg/kg 08/14/00 Lead-Low Level, Leachable BDL 0.005 mg/L 08/18/00 Nickel, Leachable 0.044 0.02 mg/L 08/17/00 Nickel, Solid 8.3 0.40 mg/kg 08/14/00 Sulfide, Leachable BDL 1.0 mg/L 09/05/00 Tin, Leachable BDL 0.01 mg/L 08/17/00 Zinc, Solid 270 0.20 mg/kg 08/14/00 Zinc, Solid 200 0.10 mg/kg 08/14/00 BNA Extraction, Solid Completed 08/14/00 08/14/00 EP Toxicity Leaching Procedure Completed 08/14/00 Method 8270, Solid BDL 330 ug/kg 08/24/00 Method 8270, Solid BDL 330 ug/kg 08/24/00 Volatile Organic Compounds, Solid BDL 330 ug/kg 08/24/00 Acetone BDL 10 ug/kg 08/21/00 Acetone BDL <td></td> <td></td> <td></td> <td>-</td> <td></td> | | | | - | | | Lead-Low Level, Leachable BDL 0.005 mg/L 08/18/00 Nickel, Leachable 0.044 0.02 mg/L 08/17/00 Nickel, Solid 8.3 0.40 mg/kg 08/14/00 Sulfide, Leachable BDL 1.0 mg/L 09/05/00 Tin, Leachable BDL 0.01 mg/L 08/17/00 Tin, Leachable BDL 0.01 mg/L 08/17/00 Tin, Solid 270 0.20 mg/kg 08/14/00 Zinc, Leachable 1.3 0.005 mg/L 08/17/00 Zinc, Solid 200 0.10 mg/kg 08/14/00 BNA Extraction, Solid Completed 08/14/00 EP Toxicity Leaching Procedure Completed 08/14/00 Method 8270, Solid Bis (2-ethylhexyl) phthalate 1100 330 ug/kg 08/24/00 Benzyl Alcohol BDL 330 ug/kg 08/24/00 Volatile Organic Compounds, Solid Trichlorofluoromethane BDL 10 ug/kg 08/21/00 Acetone BDL 25 ug/kg 08/21/00 Acetone BDL 10 ug/kg 08/21/00 2-Butanone BDL 10 ug/kg 08/21/00 1,1,1-Trichloroethane BDL 10 ug/kg 08/21/00 Trichloroethene BDL 10 ug/kg 08/21/00 4-Methyl-2-Pentanone 12 10 ug/kg 08/21/00 Toluene BDL 10 ug/kg 08/21/00 | | | | | | | Nickel, Leachable 0.044 0.02 mg/L 08/17/00 Nickel, Solid 8.3 0.40 mg/kg 08/14/00 Sulfide, Leachable BDL 1.0 mg/L 09/05/00 Tin, Leachable BDL 0.01 mg/L 08/17/00 Tin, Solid 270 0.20 mg/kg 08/14/00 Zinc, Leachable 1.3 0.005 mg/L 08/17/00 Zinc, Solid 200 0.10 mg/kg 08/14/00 BNA Extraction, Solid Completed 08/14/00 08/14/00 EP Toxicity Leaching Procedure Completed 08/14/00 08/14/00 Method 8270, Solid Inc. Inc. 08/14/00 08/14/00 08/14/00 Benzyl Alcohol BDL 330 ug/kg 08/24/00 08/24/00 Volatile Organic Compounds, Solid Trichlorofluoromethane BDL 10 ug/kg 08/21/00 Acetone BDL 10 ug/kg 08/21/00 Methylene Chloride BDL 10 <td></td> <td></td> <td></td> <td></td> <td></td> | | | | | | | Nickel, Solid 8.3 0.40 mg/kg 08/14/00 Sulfide, Leachable BDL 1.0 mg/L 09/05/00 Tin, Leachable BDL 0.01 mg/L 08/17/00 Tin, Solid 270 0.20 mg/kg 08/14/00 Zinc, Leachable 1.3 0.005 mg/L 08/17/00 Zinc, Solid 200 0.10 mg/kg 08/14/00 BNA Extraction, Solid Completed 08/14/00 08/14/00 EP Toxicity Leaching Procedure Completed 08/14/00 08/14/00 Method 8270, Solid Sig Ug/kg 08/24/00 Bis (2-ethylhexyl) phthalate 1100 330 ug/kg 08/24/00 Benzyl Alcohol BDL 330 ug/kg 08/24/00 Volatile Organic Compounds, Solid Virial Compounds, Solid Ug/kg 08/21/00 Acetone BDL 10 ug/kg 08/21/00 Acetone BDL 10 ug/kg 08/21/00 2 - Butanone BDL <td>· ·</td> <td></td> <td></td> <td>=</td> <td></td> | · · | | | = | | | Sulfide, Leachable BDL 1.0 mg/L 09/05/00 Tin, Leachable BDL 0.01 mg/L 08/17/00 Tin, Solid 270 0.20 mg/kg 08/14/00 Zinc, Leachable 1.3 0.005 mg/L 08/17/00 Zinc, Solid 200 0.10 mg/kg 08/14/00 BNA Extraction, Solid Completed 08/14/00 EP Toxicity Leaching Procedure Completed 08/14/00 Method 8270, Solid Ug/kg 08/24/00 Bis (2-ethylhexyl) phthalate 1100 330 ug/kg 08/24/00 Benzyl Alcohol BDL 330 ug/kg 08/24/00 Volatile Organic Compounds, Solid Village Trichlorofluoromethane BDL 10 ug/kg 08/21/00 Acetone BDL 10 ug/kg 08/21/00 Methylene Chloride BDL 10 ug/kg 08/21/00 2 - Butanone BDL 10 ug/kg 08/21/00 1,1,1 Trichloroethane < | | | | = | | | Tin, Leachable BDL 0.01 mg/L 08/17/00 Tin, Solid 270 0.20 mg/kg 08/14/00 Zinc, Leachable 1.3 0.005 mg/L 08/17/00 Zinc, Solid 200 0.10 mg/kg 08/14/00 BNA Extraction, Solid Completed 08/14/00 EP Toxicity Leaching Procedure Completed 08/24/00 Method 8270, Solid Ug/kg 08/24/00 Bis (2-ethylhexyl) phthalate 1100 330 ug/kg 08/24/00 Benzyl Alcohol BDL 330 ug/kg 08/24/00 Volatile Organic Compounds, Solid BDL 10 ug/kg 08/21/00 Acetone BDL 25 ug/kg 08/21/00 Acetone BDL 10 ug/kg 08/21/00 2 - Butanone BDL 10 ug/kg 08/21/00 1,1,1-Trichloroethane BDL 10 ug/kg 08/21/00 Trichloroethene BDL 10 ug/kg 08/21/00 <td></td> <td></td> <td></td> <td></td> <td></td> | | | | | | | Tin, Solid 270 0.20 mg/kg 08/14/00 Zinc, Leachable 1.3 0.005 mg/L 08/17/00 Zinc, Solid 200 0.10 mg/kg 08/14/00 BNA Extraction, Solid Completed 08/14/00 EP Toxicity Leaching Procedure Completed 08/14/00 Method 8270, Solid Tillogolia 330 ug/kg 08/24/00 Benzyl Alcohol BDL 330 ug/kg 08/24/00 Volatile Organic Compounds, Solid BDL 10 ug/kg 08/21/00 Acetone BDL 10 ug/kg 08/21/00 Acetone BDL 10 ug/kg 08/21/00 Methylene Chloride BDL 10 ug/kg 08/21/00 2 - Butanone BDL 10 ug/kg 08/21/00 1,1,1-Trichloroethane BDL 10 ug/kg 08/21/00 Trichloroethene BDL 10 ug/kg 08/21/00 4-Methyl-2-Pentanone 12 10 | | | | - | | | Zinc, Leachable 1.3 0.005 mg/L 08/17/00 Zinc, Solid 200 0.10 mg/kg 08/14/00 BNA Extraction, Solid Completed 08/14/00 EP Toxicity Leaching Procedure Completed 08/14/00 Method 8270, Solid Till 00 330 ug/kg 08/24/00 Bis (2-ethylhexyl) phthalate 1100 330 ug/kg 08/24/00 Benzyl Alcohol BDL 330 ug/kg 08/24/00
Volatile Organic Compounds, Solid Trichlorofluoromethane BDL 10 ug/kg 08/21/00 Acetone BDL 10 ug/kg 08/21/00 Methylene Chloride BDL 10 ug/kg 08/21/00 2 - Butanone BDL 10 ug/kg 08/21/00 1,1,1-Trichloroethane BDL 10 ug/kg 08/21/00 Trichloroethene BDL 10 ug/kg 08/21/00 4-Methyl-2-Pentanone 12 10 ug/kg 08/21/00 Toluene BDL 10 ug/kg 08/21/00 | Tin, Solid | 270 | | - | | | Zinc, Solid 200 0.10 mg/kg 08/14/00 BNA Extraction, Solid Completed 08/14/00 EP Toxicity Leaching Procedure Completed 08/14/00 Method 8270, Solid Trichlord Solid Ug/kg 08/24/00 Bis (2-ethylhexyl) phthalate 1100 330 ug/kg 08/24/00 Benzyl Alcohol BDL 330 ug/kg 08/24/00 Volatile Organic Compounds, Solid Trichlorofluoromethane BDL 10 ug/kg 08/21/00 Acetone BDL 25 ug/kg 08/21/00 Methylene Chloride BDL 10 ug/kg 08/21/00 2 - Butanone BDL 10 ug/kg 08/21/00 1,1,1-Trichloroethane BDL 10 ug/kg 08/21/00 4-Methyl-2-Pentanone 12 10 ug/kg 08/21/00 Toluene BDL 10 ug/kg 08/21/00 | Zinc, Leachable | 1.3 | 0.005 | - - | | | BNA Extraction, Solid Completed 08/14/00 EP Toxicity Leaching Procedure Completed 08/14/00 Method 8270, Solid Bis (2-ethylhexyl) phthalate 1100 330 ug/kg 08/24/00 Benzyl Alcohol BDL 330 ug/kg 08/24/00 Volatile Organic Compounds, Solid Trichlorofluoromethane BDL 10 ug/kg 08/21/00 Acetone BDL 25 ug/kg 08/21/00 Methylene Chloride BDL 10 ug/kg 08/21/00 2 - Butanone BDL 10 ug/kg 08/21/00 1,1,1-Trichloroethane BDL 10 ug/kg 08/21/00 4-Methyl-2-Pentanone 12 10 ug/kg 08/21/00 Toluene BDL 10 ug/kg 08/21/00 | Zinc, Solid | | 0.10 | - | | | Method 8270, Solid Bis (2-ethylhexyl) phthalate 1100 330 ug/kg 08/24/00 Benzyl Alcohol BDL 330 ug/kg 08/24/00 Volatile Organic Compounds, Solid Trichlorofluoromethane BDL 10 ug/kg 08/21/00 Acetone BDL 25 ug/kg 08/21/00 Methylene Chloride BDL 10 ug/kg 08/21/00 2 -Butanone BDL 10 ug/kg 08/21/00 1,1,1-Trichloroethane BDL 10 ug/kg 08/21/00 Trichloroethene BDL 10 ug/kg 08/21/00 4-Methyl-2-Pentanone 12 10 ug/kg 08/21/00 Toluene BDL 10 ug/kg 08/21/00 | BNA Extraction, Solid | Completed | | 33 | | | Bis (2-ethylhexyl) phthalate 1100 330 ug/kg 08/24/00 Benzyl Alcohol BDL 330 ug/kg 08/24/00 Volatile Organic Compounds, Solid Trichlorofluoromethane BDL 10 ug/kg 08/21/00 Acetone BDL 25 ug/kg 08/21/00 Methylene Chloride BDL 10 ug/kg 08/21/00 2 -Butanone BDL 10 ug/kg 08/21/00 1,1,1-Trichloroethane BDL 10 ug/kg 08/21/00 Trichloroethene BDL 10 ug/kg 08/21/00 4-Methyl-2-Pentanone 12 10 ug/kg 08/21/00 Toluene BDL 10 ug/kg 08/21/00 | EP Toxicity Leaching Procedure | Completed | | | 08/14/00 | | Benzyl Alcohol BDL 330 ug/kg 08/24/00 Volatile Organic Compounds, Solid Trichlorofluoromethane BDL 10 ug/kg 08/21/00 Acetone BDL 25 ug/kg 08/21/00 Methylene Chloride BDL 10 ug/kg 08/21/00 2 - Butanone BDL 10 ug/kg 08/21/00 1,1,1-Trichloroethane BDL 10 ug/kg 08/21/00 Trichloroethene BDL 10 ug/kg 08/21/00 4-Methyl-2-Pentanone 12 10 ug/kg 08/21/00 Toluene BDL 10 ug/kg 08/21/00 | Method 8270, Solid | | | • | • | | Volatile Organic Compounds, Solid BDL 10 ug/kg 08/21/00 Acetone BDL 25 ug/kg 08/21/00 Methylene Chloride BDL 10 ug/kg 08/21/00 2 - Butanone BDL 10 ug/kg 08/21/00 1,1,1-Trichloroethane BDL 10 ug/kg 08/21/00 Trichloroethene BDL 10 ug/kg 08/21/00 4-Methyl-2-Pentanone 12 10 ug/kg 08/21/00 Toluene BDL 10 ug/kg 08/21/00 | Bis (2-ethylhexyl) phthalate | 1100 | 330 | ug/kg | 08/24/00 | | Trichlorofluoromethane BDL 10 ug/kg 08/21/00 Acetone BDL 25 ug/kg 08/21/00 Methylene Chloride BDL 10 ug/kg 08/21/00 2 -Butanone BDL 10 ug/kg 08/21/00 1,1,1-Trichloroethane BDL 10 ug/kg 08/21/00 Trichloroethene BDL 10 ug/kg 08/21/00 4-Methyl-2-Pentanone 12 10 ug/kg 08/21/00 Toluene BDL 10 ug/kg 08/21/00 | Benzyl Alcohol | BDL | 330 | | 08/24/00 | | Acetone BDL 25 ug/kg 08/21/00 Methylene Chloride BDL 10 ug/kg 08/21/00 2 -Butanone BDL 10 ug/kg 08/21/00 1,1,1-Trichloroethane BDL 10 ug/kg 08/21/00 Trichloroethene BDL 10 ug/kg 08/21/00 4-Methyl-2-Pentanone 12 10 ug/kg 08/21/00 Toluene BDL 10 ug/kg 08/21/00 | Volatile Organic Compounds, Solid | | | | | | Methylene Chloride BDL 10 ug/kg 08/21/00 2 -Butanone BDL 10 ug/kg 08/21/00 1,1,1-Trichloroethane BDL 10 ug/kg 08/21/00 Trichloroethene BDL 10 ug/kg 08/21/00 4-Methyl-2-Pentanone 12 10 ug/kg 08/21/00 Toluene BDL 10 ug/kg 08/21/00 | Trichlorofluoromethane | \mathtt{BDL} | 10 | ug/kg | 08/21/00 | | 2 -Butanone BDL 10 ug/kg 08/21/00 1,1,1-Trichloroethane BDL 10 ug/kg 08/21/00 Trichloroethene BDL 10 ug/kg 08/21/00 4-Methyl-2-Pentanone 12 10 ug/kg 08/21/00 Toluene BDL 10 ug/kg 08/21/00 | Acetone | BDL | 25 | ug/kg | 08/21/00 | | 1,1,1-Trichloroethane BDL 10 ug/kg 08/21/00 Trichloroethene BDL 10 ug/kg 08/21/00 4-Methyl-2-Pentanone 12 10 ug/kg 08/21/00 Toluene BDL 10 ug/kg 08/21/00 | Methylene Chloride | BDL | 10 | ug/kg | 08/21/00 | | Trichloroethene BDL 10 ug/kg 08/21/00 4-Methyl-2-Pentanone 12 10 ug/kg 08/21/00 Toluene BDL 10 ug/kg 08/21/00 | | \mathtt{BDL} | 10 . | ug/kg | 08/21/00 | | 4-Methyl-2-Pentanone 12 10 ug/kg 08/21/00 Toluene BDL 10 ug/kg 08/21/00 | | BDL | 10 | ug/kg - | 08/21/00 | | Toluene BDL 10 ug/kg 08/21/00 | Trichloroethene | BDL | 10 | ug/kg | 08/21/00 | | The state of s | 4-Methyl-2-Pentanone | 12 | 10 | ug/kg | 08/21/00 | | Tetrachoroethylene BDL 10 ug/kg 08/21/00 | Toluene | $\mathtt{BDL}^{}$ | 10 | ug/kg | 08/21/00 | | | Tetrachoroethylene | BDL | 10 | ug/kg | 08/21/00 | | Chlorobenzene BDL 10 ug/kg 08/21/00 | Chlorobenzene | BDL | 10 | ug/kg | | Location Collected: Huntingdon Avenue, Waterbury, CT **◯** Date Sample Collected: 08/10/00 Sample Description: CC019/Solder Strip EAS Sample Number: 00080149-04 LIMS ID Number: AB09177 Date Sample Received: 08/10/00 Client Project Number: MAC0030.RC | | | Detection | | Analysis | |--------------|------|-----------|-------|----------| | Parameter | Data | Limit | Units | Date | | Ethylbenzene | BDL | 10 | ug/kg | 08/21/00 | | m/p-Xylene | BDL | 10 | ug/kg | 08/21/00 | | 0-Xylene | BDL | 10 | ug/kg | 08/21/00 | | 1,4-Dioxane | 550 | 100 | ug/kg | 08/21/00 | | Isobutanol | BDL | 50 | ug/kg | 08/21/00 | Location Collected: Huntingdon Avenue, Waterbury, CT Date Sample Collected: 08/10/00 Sample Description: CC020/Solder Strip EAS Sample Number: 00080149-05 LIMS ID Number: AB09178 Date Sample Received: 08/10/00 Client Project Number: MAC0030.RC | | | Detection | | Analysis | |-----------------------------------|----------------|-----------|----------------|----------| | Parameter | Data | Limit | Units | Date | | Cyanide, Leachable | BDL | 0.15 | mg/L | 08/18/00 | | Cyanide, Solid | BDL | 5.0 | mg/kg | 08/18/00 | | Sulfide-Total, Solid | BDL | 10 | mg/kg | 09/05/00 | | Barium, Leachable | 0.19 | 0.005 | mg/L | 08/17/00 | | Barium, Solid | 29 | 0.10 | mg/kg | 08/14/00 | | Cadmium, Leachable | BDL | 0.005 | mg/L | 08/17/00 | | Cadmium, Solid | 3.3 | 0.10 | mg/kg | 08/14/00 | | Chromium, Leachable | BDL | 0.02 | mg/L | 08/17/00 | | Chromium, Solid | 14 | 0.40 | mg/kg | 08/14/00 | | Copper, Leachable | 0.14 | 0.01 | mg/L | 08/17/00 | | Copper, Solid | 180 | 0.20 | mg/kg | 08/14/00 | | Lead, Solid | 51 | 1.0 | mg/kg | 08/14/00 | | Lead-Low Level, Leachable | \mathtt{BDL} | 0.005 | mg/L | 08/18/00 | | Nickel, Leachable | 0.049 | 0.02 | mg/L | 08/17/00 | | Nickel, Solid | 8.4 | 0.40 | mg/kg | 08/14/00 | | Sulfide, Leachable | BDL | 1.0 | mg/L | 09/05/00 | | Tin, Leachable | BDL | 0.01 | mg/L | 08/17/00 | | Tin, Solid | 84 | 0.20 | mg/kg | 08/14/00 | | Zinc, Leachable | 0.79 | 0.005 | mg/L | 08/17/00 | | Zinc, Solid | 400 | 0.10 | mg/kg | 08/14/00 | | BNA Extraction, Solid | Completed | | | 08/14/00 | | EP Toxicity Leaching Procedure | Completed | | | 08/14/00 | | Method 8270, Solid | | | | | | Bis (2-ethylhexyl) phthalate | 1200 | 330 | ug/kg | 08/25/00 | | Benzyl Alcohol | \mathtt{BDL} | 330 | ug/kg | 08/25/00 | | Volatile Organic Compounds, Solid | | • | | * | | Trichlorofluoromethane | \mathtt{BDL} | 10 | ug/kg | 08/21/00 | | Acetone | BDL | 25 | ug/kg | 08/21/00 | | Methylene Chloride | BDL | 10 | ug/kg | 08/21/00 | | 2 -Butanone | BDL | 10 | ug/kg | 08/21/00 | | 1,1,1-Trichloroethane | BDL | 10 | ug/kg - | 08/21/00 | | Trichloroethene | BDL | 10 | ug/kg | 08/21/00 | | 4-Methyl-2-Pentanone | BDL | 10 . | ug/kg | 08/21/00 | | Toluene | BDL | 10 | ug/kg | 08/21/00 | | Tetrachoroethylene | BDL | 10 | ug/kg | 08/21/00 | | Chlorobenzene | BDL | 10 . | ug/kg | 08/21/00 | | • | | • | - - | | Location Collected: Huntingdon Avenue, Waterbury, CT Date Sample Collected: 08/10/00 Sample Description: CC020/Solder Strip EAS Sample Number: 00080149-05 LIMS ID Number: AB09178 Date Sample Received: 08/10/00 Client Project Number: MAC0030.RC | | | Detection | - | Analysis | |--------------|------|-----------|-------|----------| | Parameter | Data | Limit | Units | Date | | Ethylbenzene | 180 | 10 | ug/kg | 08/21/00 | | m/p-Xylene | 650 | 10 | ug/kg | 08/21/00 | | 0-Xylene | 170 | 10 | ug/kg | 08/21/00 | | 1,4-Dioxane | 380 | 100 | ug/kg | 08/21/00 | | Isobutanol | BDL | 50 | ug/kg | 08/21/00 | Location Collected: Huntingdon Ave., Waterbury, CT Date Sample Collected: 08/10/00 Sample Description: CC011/NMP EAS Sample Number: 00080149-06 LIMS ID Number: AB09179 Date Sample Received: 08/10/00 Client Project Number: MAC0030.RC | Parameter | Data | Detection
Limit | Units | Analysis
Date | |-----------------------------------|----------------|--------------------|----------------|------------------| | Cyanide, Leachable | BDL | 0.15 | mg/L | 08/18/00 | | Cyanide, Solid | BDL | 5.0 | mg/kg | 08/18/00 | | Sulfide-Total, Solid | 20 | 10 | mg/kg | 09/05/00 | | Arsenic, Solid | BDL | 2.0 | mg/kg
mg/kg | 08/14/00 | | Arsenic-Low Level, Leachable | BDL | 0.005 | mg/L | 08/21/00 | | Barium, Leachable | 0.33 | 0.005 | mg/L | 08/17/00 | | Barium, Solid | 58 | 0.10 | mg/kg | 08/14/00 | | Cadmium, Leachable | BDL | 0.005 | mg/L | 08/17/00 | | Cadmium, Solid | 3.5 | 0.10 | mg/kg | 08/14/00 | | Chromium, Leachable | 0.11 | 0.02 | mg/L | 08/17/00 | | Chromium, Solid | 52 | 0.40 | mg/kg | 08/14/00 | | Copper, Leachable | 0.67 | 0.01 | mg/L | 08/17/00 | | Copper,
Solid | 170 | 0.20 | mg/kg | 08/14/00 | | Lead, Solid | 62 | 1.0 | mg/kg | 08/14/00 | | Lead-Low Level, Leachable | 0.049 | 0.005 | mg/L | 08/18/00 | | Nickel, Leachable | 0.55 | 0.02 | mg/L | 08/17/00 | | Nickel, Solid | 49 | 0.40 | mg/kg | 08/14/00 | | Sulfide, Leachable | BDL | 1.0 | mg/L | 09/05/00 | | Tin, Leachable | BDL | 0.01 | mg/L | 08/17/00 | | Tin, Solid | 190 | 0.20 | mg/kg | 08/14/00 | | Zinc, Leachable | 5.4 | 0.005 | mg/L | 08/17/00 | | Zinc, Solid | 470 | 0.10 | mg/kg | 08/14/00 | | BNA Extraction, Solid | Completed | • | | 08/14/00 | | EP Toxicity Leaching Procedure | Completed | | | 08/14/00 | | Method 8270, Solid | _ | • | | | | Bis (2-ethylhexyl) phthalate | 1400 | 330 | ug/kg | 08/25/00 | | Benzyl Alcohol | BDL | 330 | ug/kg | 08/25/00 | | Volatile Organic Compounds, Solid | • | | 0 0 | | | Trichlorofluoromethane | BDL | 10 | ug/kg | 08/21/00 | | Acetone | BDL | 25 | ug/kg | 08/21/00 | | Methylene Chloride | BDL | 10 | ug/kg | 08/21/00 | | 2 -Butanone | \mathtt{BDL} | 10 | ug/kg | 08/21/00 | | 1,1,1-Trichloroethane | \mathtt{BDL} | 10 | ug/kg | 08/21/00 | | Trichloroethene | BDL | 10 | ug/kg | 08/21/00 | | Toluene | BDL | 10 | ug/kg | 08/21/00 | | Tetrachoroethylene | BDL | 10 | ug/kg | 08/21/00 | | | | | - • | | Location Collected: Huntingdon Ave., Waterbury, CT Date Sample Collected: 08/10/00 Sample Description: CC011/NMP EAS Sample Number: 00080149-06 LIMS ID Number: AB09179 Date Sample Received: 08/10/00 Client Project Number: MAC0030.RC | | | Detection | | Analysis | |---------------|------|-----------|-------|----------| | Parameter | Data | Limit | Units | Date | | Chlorobenzene | BDL | 10 | ug/kg | 08/21/00 | | Ethylbenzene | BDL | 10 | ug/kg | 08/21/00 | | m/p-Xylene | BDL | 10 | ug/kg | 08/21/00 | | 0-Xylene | BDL | 10 | ug/kg | 08/21/00 | | Isobutanol | BDL | 50 | ug/kg | 08/21/00 | Location Collected: Huntingdon Ave., Waterbury, CT Date Sample Collected: 08/10/00 Sample Description: CC012/NMP EAS Sample Number: 00080149-07 LIMS ID Number: AB09180 Date Sample Received: 08/10/00 | Parameter | Data | DetectionLimit | Units | Analysis
Date | |-----------------------------------|----------------|----------------|---------|------------------| | Cyanide, Leachable | BDL | 0.15 | mg/L | 08/18/00 | | Cyanide, Solid | \mathtt{BDL} | 5.0 | mg/kg | 08/18/00 | | Sulfide-Total, Solid | \mathtt{BDL} | 10 | mg/kg | 09/05/00 | | Arsenic, Solid | 2.3 | 2.0 | mg/kg | 08/14/00 | | Arsenic-Low Level, Leachable | \mathtt{BDL} | 0.005 | mg/L | 08/21/00 | | Barium, Leachable | 0.31 | 0.005 | mg/L | 08/17/00 | | Barium, Solid | 45 | 0.10 | mg/kg | 08/14/00 | | Cadmium, Leachable | BDL | 0.005 | mg/L | 08/17/00 | | Cadmium, Solid | 1.7 | 0.10 | mg/kg | 08/14/00 | | Chromium, Leachable | \mathtt{BDL} | 0.02 | mg/L | 08/17/00 | | Chromium, Solid | 5.6 | 0.40 | mg/kg | 08/14/00 | | Copper, Leachable | 0.058 | 0.01 | mg/L | 08/17/00 | | Copper, Solid | 9.3 | 0.20 | mg/kg | 08/14/00 | | Lead, Solid | 2.3 | 1.0 | mg/kg | 08/14/00 | | Lead-Low Level, Leachable | BDL | 0.005 | mg/L | 08/18/00 | | Nickel, Leachable | 0.038 | 0.02 | mg/L | 08/17/00 | | Nickel, Solid | 5.2 | 0.40 | mg/kg | 08/14/00 | | Sulfide, Leachable | BDL | 1.0 | mg/L | 09/05/00 | | Tin, Leachable | BDL | 0.01 | mg/L | 08/17/00 | | Tin, Solid | 4.8 | 0.20 | mg/kg | 08/14/00 | | Zinc, Leachable | 0.069 | 0.005 | mg/L | 08/17/00 | | Zinc, Solid | 12 | 0.10 | mg/kg | 08/14/00 | | BNA Extraction, Solid | Completed | 1 | , | 08/14/00 | | EP Toxicity Leaching Procedure | Completed | ł | | 08/14/00 | | Method 8270, Solid | | | | · | | Bis (2-ethylhexyl) phthalate | BDL | 330 | ug/kg | 08/28/00 | | Benzyl Alcohol | BDL | 330 | ug/kg | 08/28/00 | | Volatile Organic Compounds, Solid | | | | | | Trichlorofluoromethane | BDL | 10 | ug/kg | 08/21/00 | | Acetone | BDL | 25 | ug/kg | 08/21/00 | | Methylene Chloride | BDL | 10 | ug/kg - | 08/21/00 | | 2 -Butanone | BDL | 10 | ug/kg | 08/21/00 | | 1,1,1-Trichloroethane | \mathtt{BDL} | 10 | ug/kg | 08/21/00 | | Trichloroethene | BDL | 10 | ug/kg | 08/21/00 | | Toluene | BDL | 10 | ug/kg | 08/21/00 | | Tetrachoroethylene | \mathtt{BDL} | 10 | ug/kg | 08/21/00 | | | | | | | Location Collected: Huntingdon Ave., Waterbury, CT Date Sample Collected: 08/10/00 Sample Description: CC012/NMP EAS Sample Number: 00080149-07 LIMS ID Number: AB09180 Date Sample Received: 08/10/00 | Parameter | | Analysis | | | |---------------|----------------|----------|---------|----------| | | Data | Limit | Units | Date | | Chlorobenzene | BDL | 10 | ug/kg | 08/21/00 | | Ethylbenzene | \mathtt{BDL} | 10 | ug/kg | 08/21/00 | | m/p-Xylene | BDL | 10 | ug/kg | 08/21/00 | | 0-Xylene | \mathtt{BDL} | 10 | ug/kg · | 08/21/00 | | Isobutanol | BDL | 50 | ug/kg | 08/21/00 | Location Collected: Huntingdon Ave., Waterbury, CT Date Sample Collected: 08/10/00 Sample Description: CC013/NMP EAS Sample Number: 00080149-08 LIMS ID Number: AB09181 Date Sample Received: 08/10/00 Client Project Number: MAC0030.RC | Parameter | Data | Detection
Limit | Units | Analysis
Date | |-----------------------------------|----------------|--------------------|---------|------------------| | Cyanide, Leachable | BDL | 0.15 | mg/L | 08/18/00 | | Cyanide, Solid | BDL | 5.0 | mg/kg | 08/18/00 | | Sulfide-Total, Solid | BDL | 10 | mg/kg | 09/05/00 | | Arsenic, Solid | 3.0 | 2.0 | mg/kg | 08/14/00 | | Arsenic-Low Level, Leachable | \mathtt{BDL} | 0.005 | mg/L | 08/21/00 | | Barium, Leachable | 0.19 | 0.005 | mg/L | 08/17/00 | | Barium, Solid | 26 | 0.10 | mg/kg | 08/14/00 | | Cadmium, Leachable | \mathtt{BDL} | 0.005 | mg/L | 08/17/00 | | Cadmium, Solid | 1.8 | 0.10 | mg/kg | 08/14/00 | | Chromium, Leachable | BDL | 0.02 | mg/L | 08/17/00 | | Chromium, Solid | 8.6 | 0.40 | mg/kg | 08/14/00 | | Copper, Leachable | BDL | 0.01 | mg/L | 08/17/00 | | Copper, Solid | 11 | 0.20 | mg/kg | 08/14/00 | | Lead, Solid | 4.4 | 1.0 | mg/kg | 08/14/00 | | Lead-Low Level, Leachable | BDL | 0.005 | mg/L | 08/18/00 | | Nickel, Leachable | 0.023 | 0.02 | mg/L | 08/17/00 | | Nickel, Solid | 7.0 | 0.40 | mg/kg | 08/14/00 | | Sulfide, Leachable | BDL | 1.0 | mg/L | 09/05/00 | | Tin, Leachable | BDL | 0.01 | mg/L | 08/17/00 | | Tin, Solid | 2.1 | 0.20 | mg/kg | 08/14/00 | | Zinc, Leachable | \mathtt{BDL} | 0.005 | mg/L | 08/17/00 | | Zinc, Solid | 14 | 0.10 | mg/kg | 08/14/00 | | BNA Extraction, Solid | Completed | • | | 08/14/00 | | EP Toxicity Leaching Procedure | Completed | | | 08/14/00 | | Method 8270, Solid | | | | | | Bis (2-ethylhexyl) phthalate | BDL | 330 | ug/kg | 08/28/00 | | Benzyl Alcohol | BDL | 330 | ug/kg | 08/28/00 | | Volatile Organic Compounds, Solid | | , | | | | Trichlorofluoromethane | \mathtt{BDL} | 10 | ug/kg | 08/21/00 | | Acetone | BDL | 25 | ug/kg | 08/21/00 | | Methylene Chloride | BDL | 10 | ug/kg - | 08/21/00 | | 2 -Butanone | BDL | 10 | ug/kg | 08/21/00 | | 1,1,1-Trichloroethane | BDL | 10 | ug/kg | 08/21/00 | | Trichloroethene | BDL | 10 | ug/kg | 08/21/00 | | Toluene | BDL | 10 | ug/kg | 08/21/00 | | Tetrachoroethylene | BDL | 10 . | ug/kg | 08/21/00 | | | | | - 3 | · - - | Location Collected: Huntingdon Ave., Waterbury, CT Date Sample Collected: 08/10/00 Sample Description: CC013/NMP EAS Sample Number: 00080149-08 LIMS ID Number: AB09181 Date Sample Received: 08/10/00 | Parameter | Data | Detection
Limit | Units | Analysis
Date | |---------------|------|--------------------|-------|------------------| | Chlorobenzene | BDL | 10 | | | | Ethylbenzene | BDL | 10 | ug/kg | 08/21/00 | | m/p-Xylene | BDL | 10 | ug/kg | 08/21/00 | | 0-Xylene | BDL | 10 | ug/kg | 08/21/00 | | Isobutanol | BDL | 50 | ug/kg | 08/21/00 | | isobutanoi | בעם | . 50 | ug/kg | 08/21/00 | Location Collected: Huntingdon Ave., Waterbury, CT Date Sample Collected: 08/10/00 Sample Description: CC014/NMP EAS Sample Number: 00080149-09 LIMS ID Number: AB09182 Date Sample Received: 08/10/00 Client Pariet Number: MAC0020 | D | 7 | Detection | | Analysis | |-----------------------------------|----------------|-----------|--------------|-------------| | Parameter | Data | Limit | Units | <u>Date</u> | | Cyanide, Leachable | \mathtt{BDL} | 0.15 | mg/L | 08/18/00 | | Cyanide, Solid | \mathtt{BDL} | 5.0 | mg/kg | 08/18/00 | | Sulfide-Total, Solid | BDL | 10 | mg/kg | 09/05/00 | | Arsenic, Solid | \mathtt{BDL} | 2.0 | mg/kg | 08/14/00 | | Arsenic-Low Level, Leachable | \mathtt{BDL} | 0.005 | ${ m mg/L}$ | 08/21/00 | | Barium, Leachable | 0.21 | 0.005 | ${ m mg/L}$ | 08/17/00 | | Barium, Solid | 50 | 0.10 | mg/kg | 08/14/00 | | Cadmium, Leachable | BDL | 0.005 | ${ t mg/L}$ | 08/17/00 | | Cadmium, Solid | 2.8 | 0.10 | mg/kg | 08/14/00 | | Chromium, Leachable | \mathtt{BDL} | 0.02 | ${ t mg/L}$ | 08/17/00 | | Chromium, Solid | 49 | 0.40 | mg/kg | 08/14/00 | | Copper, Leachable | 0.30 | 0.01 | ${\sf mg/L}$ | 08/17/00 | | Copper, Solid | 130 | 0.20 | mg/kg | 08/14/00 | | Lead, Solid | 45 | 1.0 | mg/kg | 08/14/00 | | Lead-Low Level, Leachable | BDL | 0.005 | mg/L | 08/18/00 | | Nickel, Leachable | 0.53 | 0.02 | mg/L | 08/17/00 | | Nickel, Solid | 50 | 0.40 | mg/kg | 08/14/00 | | Sulfide, Leachable | BDL | 1.0 | ${ m mg/L}$ | 09/05/00 | | Tin, Leachable | \mathtt{BDL} | 0.01 | mg/L | 08/17/00 | | Tin, Solid | 42 | 0.20 | mg/kg | 08/14/00 | | Zinc, Leachable | 5.0 | 0.005 | ${ m mg/L}$ | 08/17/00 | | Zinc, Solid | 510 | 0.10 | mg/kg | 08/14/00 | | BNA Extraction, Solid | Complete | d | | 08/14/00 | | EP Toxicity Leaching Procedure | Complete | d | | 08/14/00 | | Method 8270, Solid | | | - | | | Bis (2-ethylhexyl) phthalate | \mathtt{BDL} | 330 | ug/kg | 08/24/00 | | Benzyl Alcohol | \mathtt{BDL} | .330 | ug/kg | 08/24/00 | | Volatile Organic Compounds, Solid | | | | | | Trichlorofluoromethane | \mathtt{BDL} | 10 | ug/kg | 08/21/00 | | Acetone | \mathtt{BDL} | 25 | ug/kg | 08/21/00 | | Methylene Chloride | \mathtt{BDL} | 10 | ug/kg - | 08/21/00 | | 2 -Butanone | BDL | 10 | ug/kg | 08/21/00 | | 1,1,1-Trichloroethane | BDL | 10 | ug/kg |
08/21/00 | | Trichloroethene | BDL | 10 | ug/kg | 08/21/00 | | Toluene | BDL | 10 | ug/kg | 08/21/00 | | Tetrachoroethylene | \mathtt{BDL} | 10 . | ug/kg | 08/21/00 | | | | | | - | Location Collected: Huntingdon Ave., Waterbury, CT Date Sample Collected: 08/10/00 Sample Description: CC014/NMP EAS Sample Number: 00080149-09 LIMS ID Number: AB09182 Date Sample Received: 08/10/00 | Parameter | Data | Detection
Limit | Units | Analysis
Date | |---------------|----------------|--------------------|-------|------------------| | Chlorobenzene | BDL | 10 | ug/kg | 08/21/00 | | Ethylbenzene | \mathtt{BDL} | 10 | ug/kg | 08/21/00 | | m/p-Xylene | \mathtt{BDL} | 10 | ug/kg | 08/21/00 | | 0-Xylene | BDL | 10 | ug/kg | 08/21/00 | | Isobutanol | \mathtt{BDL} | 50 | ug/kg | 08/21/00 | Location Collected: Huntingdon Ave., Waterbury, CT Date Sample Collected: 08/10/00 Sample Description: CC015/NMP EAS Sample Number: 00080149-10 LIMS ID Number: AB09183 Date Sample Received: 08/10/00 Client Project Number: MAC0030.RC | _ | | | Detection | | Analysis | |-----------------------------------|------------|----------------|---------------------------------------|-------------|----------| | Parameter | | Data | Limit | Units | Date | | Cyanide, Leachable | • | \mathtt{BDL} | 0.15 | mg/L | 08/18/00 | | Cyanide, Solid | | BDL | 5.0 | mg/kg | 08/18/00 | | Sulfide-Total, Solid | | 16 | 10 | mg/kg | 09/05/00 | | Arsenic, Solid | - | 2.1 | 2.0 | mg/kg | 08/14/00 | | Arsenic-Low Level, Leachable | | \mathtt{BDL} | 0.005 | mg/L | 08/21/00 | | Barium, Leachable | | 0.35 | 0.005 | ${ t mg/L}$ | 08/17/00 | | Barium, Solid | | 60 | 0.10 | mg/kg | 08/14/00 | | Cadmium, Leachable | | BDL | 0.005 | ${ m mg/L}$ | 08/17/00 | | Cadmium, Solid | | 2.6 | 0.10 | mg/kg | 08/14/00 | | Chromium, Leachable | 4 | \mathtt{BDL} | 0.02 | mg/L | 08/17/00 | | Chromium, Solid | | 16 | 0.40 | mg/kg | 08/14/00 | | Copper, Leachable | | 0.034 | 0.01 | mg/L | 08/17/00 | | Copper, Solid | | 56 | 0.20 | mg/kg | 08/14/00 | | Lead, Solid | | 42 | 1.0 | mg/kg | 08/14/00 | | Lead-Low Level, Leachable | | BDL | 0.005 | ${ m mg/L}$ | 08/18/00 | | Nickel, Leachable | | 0.055 | 0.02 | mg/L | 08/17/00 | | Nickel, Solid | | 14 | 0.40 | mg/kg | 08/14/00 | | Sulfide, Leachable | | BDL | 1.0 | mg/L | 09/05/00 | | Tin, Leachable | | \mathtt{BDL} | 0.01 | m mg/L | 08/17/00 | | Tin, Solid | 94 - A - A | 300 | 0.20 | mg/kg | 08/14/00 | | Zinc, Leachable | | 0.094 | 0.005 | ${ m mg/L}$ | 08/17/00 | | Zinc, Solid | | 40 | 0.10 | mg/kg | 08/14/00 | | BNA Extraction, Solid | | Completed | | | 08/14/00 | | EP Toxicity Leaching Procedure | | Completed | , , , , , , , , , , , , , , , , , , , | | 08/14/00 | | Method 8270, Solid | | | | | | | Bis (2-ethylhexyl) phthalate | | BDL | 330 | ug/kg | 08/25/00 | | Benzyl Alcohol | | BDL | 330 | ug/kg | 08/25/00 | | Volatile Organic Compounds, Solid | • | | | | | | Trichlorofluoromethane | | BDL | 10 | ug/kg | 08/21/00 | | Acetone | | BDL | 25 · | ug/kg | 08/21/00 | | Methylene Chloride | | BDL | 10 | ug/kg - | 08/21/00 | | 2 -Butanone | | BDL | 10 | ug/kg | 08/21/00 | | 1,1,1-Trichloroethane | | BDL | . 10 | ug/kg | 08/21/00 | | Trichloroethene | | BDL | 10 | ug/kg | 08/21/00 | | Toluene | | \mathtt{BDL} | 10 | ug/kg | 08/21/00 | | Tetrachoroethylene | * | BDL | 10 | ug/kg | 08/21/00 | | | | | | | | Location Collected: Huntingdon Ave., Waterbury, CT Date Sample Collected: 08/10/00 Sample Description: CC015/NMP EAS Sample Number: 00080149-10 LIMS ID Number: AB09183 Date Sample Received: 08/10/00 Client Project Number: MAC0030.RC | | | Detection | | Analysis | |---------------|----------------|-----------|-------|----------| | Parameter | <u>Data</u> | Limit | Units | Date | | Chlorobenzene | BDL | 10 | ug/kg | 08/21/00 | | Ethylbenzene | \mathtt{BDL} | 10 | ug/kg | 08/21/00 | | m/p-Xylene | BDL | 10 | ug/kg | 08/21/00 | | 0-Xylene | BDL | 10 | ug/kg | 08/21/00 | | Isobutanol | BDL | 50 | na/ka | 08/21/00 | Location Collected: Huntingdon Ave., Waterbury, CT Date Sample Collected: 08/10/00 Sample Description: CC021/NMP EAS Sample Number: 00080149-11 LIMS ID Number: AB09184 Date Sample Received: 08/10/00 Client Project Number: MAC0030.RC | | | | | * | |-----------------------------------|----------------|-----------|-------|----------| | | | Detection | | Analysis | | Parameter | Data | Limit | Units | Date | | Cyanide, Leachable | BDL | 0.15 | mg/L | 08/18/00 | | Cyanide, Solid | \mathtt{BDL} | 5.0 | mg/kg | 08/18/00 | | Sulfide-Total, Solid | 60 | 10 | mg/kg | 09/05/00 | | Arsenic, Solid | \mathtt{BDL} | 2.0 | mg/kg | 08/14/00 | | Arsenic-Low Level, Leachable | \mathtt{BDL} | 0.005 | mg/L | 08/21/00 | | Barium, Leachable | 0.39 | 0.005 | mg/L | 08/17/00 | | Barium, Solid | 53 | 0.10 | mg/kg | 08/14/00 | | Cadmium, Leachable | \mathtt{BDL} | 0.005 | mg/L | 08/17/00 | | Cadmium, Solid | 2.5 | 0.10 | mg/kg | 08/14/00 | | Chromium, Leachable | 0.031 | 0.02 | mg/L | 08/17/00 | | Chromium, Solid | 51 | 0.40 | mg/kg | 08/14/00 | | Copper, Leachable | 0.62 | 0.01 | mg/L | 08/17/00 | | Copper, Solid | 160 | 0.20 | mg/kg | 08/14/00 | | Lead, Solid | 56 | 1.0 | mg/kg | 08/14/00 | | Lead-Low Level, Leachable | 0.018 | 0.005 | mg/L | 08/18/00 | | Nickel, Leachable | 0.72 | 0.02 | mg/L | 08/17/00 | | Nickel, Solid | 53 | 0.40 | mg/kg | 08/14/00 | | Sulfide, Leachable | \mathtt{BDL} | 1.0 | mg/L | 09/05/00 | | Tin, Leachable | BDL | 0.01 | mg/L | 08/17/00 | | Tin, Solid | 120 | 0.20 | mg/kg | 08/14/00 | | Zinc, Leachable | 7.1 | 0.005 | mg/L | 08/17/00 | | Zinc, Solid | 500 | 0.10 | mg/kg | 08/14/00 | | BNA Extraction, Solid | Completed | | | 08/14/00 | | EP Toxicity Leaching Procedure | Completed | | | 08/14/00 | | Method 8270, Solid | | | | | | Bis (2-ethylhexyl) phthalate | \mathtt{BDL} | 330 | ug/kg | 08/28/00 | | Benzyl Alcohol | 1900 | 330 | ug/kg | 08/28/00 | | Volatile Organic Compounds, Solid | • | | | | | Trichlorofluoromethane | BDL | 10 | ug/kg | 08/21/00 | | Acetone | BDL | 25 | ug/kg | 08/21/00 | | Methylene Chloride | BDL | 10 | ug/kg | 08/21/00 | | 2 -Butanone | BDL | 10 | ug/kg | 08/21/00 | | 1,1,1-Trichloroethane | BDL | 10 | ug/kg | 08/21/00 | | Trichloroethene | BDL | 10 | ug/kg | 08/21/00 | | Toluene | BDL | 10 | ug/kg | 08/21/00 | | Tetrachoroethylene | BDL | 10 | ug/kg | 08/21/00 | Location Collected: Huntingdon Ave., Waterbury, CT Date Sample Collected: 08/10/00 Sample Description: CC021/NMP EAS Sample Number: 00080149-11 LIMS ID Number: AB09184 Date Sample Received: 08/10/00 | Parameter | Data | Detection
Limit | Units | Analysis
Date | |---------------|----------------|--------------------|-------|------------------| | Chlorobenzene | BDL | 10 | ug/kg | 08/21/00 | | Ethylbenzene | \mathtt{BDL} | 10 | ug/kg | 08/21/00 | | m/p-Xylene | \mathtt{BDL} | 10 | ug/kg | 08/21/00 | | 0-Xylene | \mathtt{BDL} | 10 | ug/kg | 08/21/00 | | Isobutanol | BDL | 50 | ug/kg | 08/21/00 | Location Collected: Huntingdon Ave., Waterbury, CT Date Sample Collected: 08/10/00 Sample Description: CC022/NMP EAS Sample Number: 00080149-12 LIMS ID Number: AB09185 Date Sample Received: 08/10/00 Client Project Number: MAC0030.RC | | | Detection | | Analysis | |-----------------------------------|----------------|-----------|--------|-------------| | Parameter | Data | Limit | Units | <u>Date</u> | | Cyanide, Leachable | BDL | 0.15 | mg/L | 08/18/00 | | Cyanide, Solid | \mathtt{BDL} | 5.0 | mg/kg | 08/18/00 | | Sulfide-Total, Solid | 36 | 10 | mg/kg | 09/05/00 | | Arsenic, Solid | 7.6 | 2.0 | mg/kg | 08/14/00 | | Arsenic-Low Level, Leachable | \mathtt{BDL} | 0.005 | mg/L | 08/21/00 | | Barium, Leachable | 0.27 | 0.005 | m mg/L | 08/17/00 | | Barium, Solid | 46 | 0.10 | mg/kg | 08/14/00 | | Cadmium, Leachable | BDL | 0.005 | mg/L | 08/17/00 | | Cadmium, Solid | 2.5 | 0.10 | mg/kg | 08/14/00 | | Chromium, Leachable | 0.87 | 0.02 | mg/L | 08/17/00 | | Chromium, Solid | 50 | 0.40 | mg/kg | 08/14/00 | | Copper, Leachable | 0.42 | 0.01 | mg/L | 08/17/00 | | Copper, Solid | 170 | 0.20 | mg/kg | 08/14/00 | | ✓ Lead, Solid | . 46 | 1.0 | mg/kg | 08/14/00 | | Lead-Low Level, Leachable | 0.008 | 0.005 | mg/L | 08/18/00 | | Nickel, Leachable | 0.67 | 0.02 | mg/L | 08/17/00 | | Nickel, Solid | 52 | 0.40 | mg/kg | 08/14/00 | | Sulfide, Leachable | \mathtt{BDL} | 1.0 | mg/L | 09/05/00 | | Tin, Leachable | BDL | 0.01 | mg/L | 08/17/00 | | Tin, Solid | 160 | 0.20 | mg/kg | 08/14/00 | | Zinc, Leachable | 6.4 | 0.005 | mg/L | 08/17/00 | | Zinc, Solid | 500 | 0.10 | mg/kg | 08/14/00 | | BNA Extraction, Solid | Completed | | | 08/16/00 | | EP Toxicity Leaching Procedure | Completed | | | 08/14/00 | | Method 8270, Solid | | | | | | Bis (2-ethylhexyl) phthalate | 690 | 330 | ug/kg | 08/25/00 | | Benzyl Alcohol | BDL | 330 | ug/kg | 08/25/00 | | Volatile Organic Compounds, Solid | | | | | | Trichlorofluoromethane | \mathtt{BDL} | 10 | ug/kg | 08/21/00 | | Acetone | BDL | 25 . | ug/kg | 08/21/00 | | Methylene Chloride | \mathtt{BDL} | 10 | ug/kg | 08/21/00 | | 2 -Butanone | BDL | 10 | ug/kg | 08/21/00 | | 1,1,1-Trichloroethane | BDL | 10 | ug/kg | 08/21/00 | | Trichloroethene | BDL | 10 | ug/kg | 08/21/00 | | Toluene | BDL | 10 | ug/kg | 08/21/00 | | Tetrachoroethylene | \mathtt{BDL} | 10 | ug/kg | 08/21/00 | | | | | - • | | Location Collected: Huntingdon Ave., Waterbury, CT Date Sample Collected: 08/10/00 Sample Description: CC022/NMP EAS Sample Number: 00080149-12 LIMS ID Number: AB09185 Date Sample Received: 08/10/00 Client Project Number: MAC0030.RC | | | Detection | | | |---------------|------|-----------|-------|----------| | Parameter | Data | Limit | Units | Date | | Chlorobenzene | BDL | 10 | ug/kg | 08/21/00 | | Ethylbenzene | BDL | 10 | ug/kg | 08/21/00 | | m/p-Xylene | BDL | 10 | ug/kg | 08/21/00 | | 0-Xylene | BDL | 10 | ug/kg | 08/21/00 | | Isobutanol | BDL | 50 | ug/kg | 08/21/00 | Location Collected: Huntingdon Ave., Waterbury, CT Date Sample Collected: 08/10/00 Sample Description: CC023/NMP EAS Sample Number: 00080149-13 LIMS
ID Number: AB09186 Date Sample Received: 08/10/00 Client Project Number: MAC0030.RC | Parameter | Data | Detection
Limit | Units | Analysis
Date | |-----------------------------------|-----------|--------------------|--------|------------------| | Cyanide, Leachable | BDL | 0.15 | mg/L | 08/18/00 | | Cyanide, Solid | BDL | 5.0 | mg/kg | 08/18/00 | | Sulfide-Total, Solid | BDL | 10 | mg/kg | 09/05/00 | | Arsenic, Solid | BDL | 2.0 | mg/kg | 08/14/00 | | Arsenic-Low Level, Leachable | BDL | 0.005 | mg/L | 08/21/00 | | Barium, Leachable | 0.37 | 0.005 | m mg/L | 08/17/00 | | Barium, Solid | 52 | 0.10 | mg/kg | 08/14/00 | | Cadmium, Leachable | BDL | 0.005 | mg/L | 08/17/00 | | Cadmium, Solid | 2.7 | 0.10 | mg/kg | 08/14/00 | | Chromium, Leachable | 0.11 | 0.02 | mg/L | 08/17/00 | | Chromium, Solid | 54 | 0.40 | mg/kg | 08/14/00 | | Copper, Leachable | 0.45 | 0.01 | mg/L | 08/17/00 | | Copper, Solid | 180 | 0.20 | mg/kg | 08/14/00 | | Lead, Solid | 57 | 1.0 | mg/kg | 08/14/00 | | Lead-Low Level, Leachable | 0.0058 | 0.005 | mg/L | 08/18/00 | | Nickel, Leachable | 0.87 | 0.02 | mg/L | 08/17/00 | | Nickel, Solid | . 54 | 0.40 | mg/kg | 08/14/00 | | Sulfide, Leachable | BDL | 1.0 | mg/L | 09/05/00 | | Tin, Leachable | BDL | 0.01 | mg/L | 08/17/00 | | Tin, Solid | 180 | 0.20 | mg/kg | 08/14/00 | | Zinc, Leachable | 7.6 | 0.005 | mg/L | 08/17/00 | | Zinc, Solid | 540 | 0.10 | mg/kg | 08/14/00 | | BNA Extraction, Solid | Completed | • | | 08/16/00 | | EP Toxicity Leaching Procedure | Completed | | | 08/14/00 | | Method 8270, Solid | | | | | | Bis (2-ethylhexyl) phthalate | 1100 | 330 | ug/kg | 08/25/00 | | Benzyl Alcohol | BDL | 330 | ug/kg | 08/25/00 | | Volatile Organic Compounds, Solid | | | | · | | Trichlorofluoromethane | BDL | 10 | ug/kg | 08/21/00 | | Acetone | BDL | 25 | ug/kg | 08/21/00 | | Methylene Chloride | BDL | 10 | ug/kg | 08/21/00 | | 2 -Butanone | BDL | 10 | ug/kg | 08/21/00 | | 1,1,1-Trichloroethane | BDL | 10 | ug/kg | 08/21/00 | | Trichloroethene | BDL | 10 | ug/kg | 08/21/00 | | Toluene | BDL | 10 | ug/kg | 08/21/00 | | Tetrachoroethylene | BDL | 10 | ug/kg | 08/21/00 | Location Collected: Huntingdon Ave., Waterbury, CT → Date Sample Collected: 08/10/00 Sample Description: CC023/NMP EAS Sample Number: 00080149-13 LIMS ID Number: AB09186 Date Sample Received: 08/10/00 Client Project Number: MAC0030.RC | | Detection | | | Analysis | |---------------|----------------|-------|-------|----------| | Parameter | Data | Limit | Units | Date | | Chlorobenzene | BDL | 10 | ug/kg | 08/21/00 | | Ethylbenzene | BDL | 10 | ug/kg | 08/21/00 | | m/p-Xylene | \mathtt{BDL} | 10 | ug/kg | 08/21/00 | | 0-Xylene | \mathtt{BDL} | 10 | ug/kg | 08/21/00 | | Isobutanol | BDL | 50 | ug/kg | 08/21/00 | Location Collected: Huntingdon Ave., Waterbury, CT Date Sample Collected: 08/10/00 Sample Description: CC024/NMP EAS Sample Number: 00080149-14 LIMS ID Number: AB09187 Date Sample Received: 08/10/00 Client Project Number: MAC0030.RC | Parameter | Data | Detection Limit | Units | Analysis
Date | |-----------------------------------|----------------|-----------------|-------------|------------------| | Cyanide, Leachable | BDL | 0.15 | mg/L | 08/18/00 | | Cyanide, Solid | BDL | 5.0 | mg/kg | 08/18/00 | | Sulfide-Total, Solid | BDL | 10 | mg/kg | 09/05/00 | | Arsenic, Solid | BDL | 2.0 | mg/kg | 08/14/00 | | Arsenic-Low Level, Leachable | BDL | 0.005 | mg/L | 08/21/00 | | Barium, Leachable | 0.17 | 0.005 | mg/L | 08/17/00 | | Barium, Solid | 53 | 0.10 | mg/kg | 08/14/00 | | Cadmium, Leachable | \mathtt{BDL} | 0.005 | mg/L | 08/17/00 | | Cadmium, Solid | 2.9 | 0.10 | mg/kg | 08/14/00 | | Chromium, Leachable | 0.40 | 0.02 | mg/L | 08/17/00 | | Chromium, Solid | 49 | 0.40 | mg/kg | 08/14/00 | | Copper, Leachable | BDL | 0.01 | mg/L | 08/17/00 | | Copper, Solid | 120 | 0.20 | mg/kg | 08/14/00 | | Lead, Solid | 42 | 1.0 | mg/kg | 08/14/00 | | Lead-Low Level, Leachable | BDL | 0.005 | mg/L | 08/18/00 | | Nickel, Leachable | BDL | 0.02 | mg/L | 08/17/00 | | Nickel, Solid | 58 | 0.40 | mg/kg | 08/14/00 | | Sulfide, Leachable | \mathtt{BDL} | 1.0 | ${ m mg/L}$ | 09/05/00 | | Tin, Leachable | BDL | 0.01 | mg/L | 08/17/00 | | Tin, Solid | 37 | 0.20 | mg/kg | 08/14/00 | | Zinc, Leachable | BDL | 0.005 | mg/L | 08/17/00 | | Zinc, Solid | 500 | 0.10 | mg/kg | 08/14/00 | | BNA Extraction, Solid | Complete | d | | 08/16/00 | | EP Toxicity Leaching Procedure | Complete | d | | 08/14/00 | | Method 8270, Solid | _ | | | | | Bis (2-ethylhexyl) phthalate | 2400 | 330 | ug/kg | 08/25/00 | | Benzyl Alcohol | \mathtt{BDL} | 330 | ug/kg | 08/25/00 | | Volatile Organic Compounds, Solid | | | | | | Trichlorofluoromethane | \mathtt{BDL} | 10 | ug/kg | 08/21/00 | | Acetone | BDL | 25 | ug/kg | 08/21/00 | | Methylene Chloride | \mathtt{BDL} | 10 | ug/kg | 08/21/00 | | 2 -Butanone | \mathtt{BDL} | 10 | ug/kg | 08/21/00 | | 1,1,1-Trichloroethane | \mathtt{BDL} | 10 | ug/kg | 08/21/00 | | Trichloroethene | \mathtt{BDL} | 10 | ug/kg | 08/21/00 | | Toluene | BDL | 10 | ug/kg | 08/21/00 | | Tetrachoroethylene | BDL | 10 . | ug/kg | 08/21/00 | | | | | | | Location Collected: Huntingdon Ave., Waterbury, CT Date Sample Collected: 08/10/00 Sample Description: CC024/NMP EAS Sample Number: 00080149-14 LIMS ID Number: AB09187 Date Sample Received: 08/10/00 Client Project Number: MAC0030.RC | | * | Detection | | | | |---------------|----------------|-----------|-------|----------|--| | Parameter | Data | Limit | Units | Date | | | Chlorobenzene | BDL | 10 | ug/kg | 08/21/00 | | | Ethylbenzene | BDL | 10 | ug/kg | 08/21/00 | | | m/p-Xylene | BDL | 10 | ug/kg | 08/21/00 | | | 0-Xylene | \mathtt{BDL} | 10 | ug/kg | 08/21/00 | | | Isobutanol | BDL | 50 | ug/kg | 08/21/00 | | Location Collected: Huntingdon Ave., Waterbury, CT Date Sample Collected: 08/10/00 Sample Description: CC025/NMP EAS Sample Number: 00080149-15 LIMS ID Number: AB09188 Date Sample Received: 08/10/00 Client Project Number: MAC0030.RC | Parameter | Data | Detection
Limit | Units | Analysis
Date | |-----------------------------------|----------------|--------------------|---------------|------------------| | Cyanide, Leachable | BDL | 0.15 | mg/L | 08/18/00 | | Cyanide, Solid | BDL | 5.0 | mg/kg | 08/18/00 | | Sulfide-Total, Solid | 40 | 10 | mg/kg | 09/05/00 | | Arsenic, Solid | 6.1 | 2.0 | mg/kg | 08/14/00 | | Arsenic-Low Level, Leachable | BDL | 0.005 | mg/L | 08/21/00 | | Barium, Leachable | 0.29 | 0.005 | $m_{\rm g}/L$ | 08/17/00 | | Barium, Solid | 60 | 0.10 | mg/kg | 08/14/00 | | Cadmium, Leachable | BDL | 0.005 | mg/L | 08/17/00 | | Cadmium, Solid | 3.3 | 0.10 | mg/kg | 08/14/00 | | Chromium, Leachable | 0.046 | 0.02 | mg/L | 08/17/00 | | Chromium, Solid | 57 | 0.40 | mg/kg | 08/14/00 | | Copper, Leachable | 0.72 | 0.01 | mg/L | 08/17/00 | | Copper, Solid | 180 | 0.20 | mg/kg | 08/14/00 | | Lead, Solid | 72 | 1.0 | mg/kg | 08/14/00 | | Lead-Low Level, Leachable | 0.019 | 0.005 | mg/L | 08/18/00 | | Nickel, Leachable | 0.56 | 0.02 | mg/L | 08/17/00 | | Nickel, Solid | 57 | 0.40 | mg/kg | 08/14/00 | | Sulfide, Leachable | BDL | 1.0 | mg/L | 09/05/00 | | Tin, Leachable | \mathtt{BDL} | 0.01 | mg/L | 08/17/00 | | Tin, Solid | 1100 | 0.20 | mg/kg | 08/14/00 | | Zinc, Leachable | 6.8 | 0.005 | mg/L | 08/17/00 | | Zinc, Solid | 670 | 0.10 | mg/kg | 08/14/00 | | BNA Extraction, Solid | Completed | 1 | | 08/17/00 | | EP Toxicity Leaching Procedure | Completed | ł | | 08/14/00 | | Method 8270, Solid | | | | | | Bis (2-ethylhexyl) phthalate | \mathtt{BDL} | 330 | ug/kg | 08/25/00 | | Benzyl Alcohol | \mathtt{BDL} | 330 | ug/kg | 08/25/00 | | Volatile Organic Compounds, Solid | | • | | • | | Trichlorofluoromethane | BDL | - 10 | ug/kg | 08/21/00 | | Acetone | \mathtt{BDL} | 25 | ug/kg | 08/21/00 | | Methylene Chloride | \mathtt{BDL} | 10 | ug/kg | 08/21/00 | | 2-Butanone | \mathtt{BDL} | 10 | ug/kg | 08/21/00 | | 1,1,1-Trichloroethane | BDL | 10 | ug/kg | 08/21/00 | | Trichloroethene | BDL | 10 | ug/kg | 08/21/00 | | Toluene | BDL | 10 | ug/kg | 08/21/00 | | Tetrachoroethylene | BDL | 10 | ug/kg | 08/21/00 | Location Collected: Huntingdon Ave., Waterbury, CT Date Sample Collected: 08/10/00 Sample Description: CC025/NMP EAS Sample Number: 00080149-15 LIMS ID Number: AB09188 Date Sample Received: 08/10/00 | | | Analysis | | | |---------------|------|----------|-------|----------| | Parameter | Data | Limit | Units | Date | | Chlorobenzene | BDL | 10 | ug/kg | 08/21/00 | | Ethylbenzene | BDL | 10 | ug/kg | 08/21/00 | | m/p-Xylene | BDL | 10 | ug/kg | 08/21/00 | | 0-Xylene | BDL | 10 | ug/kg | 08/21/00 | | Isobutanol | BDL | 50 | ug/kg | 08/21/00 | Location Collected: Huntingdon Ave., Waterbury, CT Date Sample Collected: 08/10/00 Sample Description: CC026/NMP EAS Sample Number: 00080149-16 LIMS ID Number: AB09189 Date Sample Received: 08/10/00 Client Project Number: MAC0030.RC | | | Detection | | Analysis | |-----------------------------------|----------------|-----------|--------------|----------| | Parameter | Data | Limit | Units | Date | | Cyanide, Leachable | \mathtt{BDL} | 0.15 | mg/L | 08/18/00 | | Cyanide, Solid | BDL | 5.0 | mg/kg | 08/18/00 | | Sulfide-Total, Solid | 10 | 10 | mg/kg | 09/05/00 | | Arsenic, Solid | 5.1 | 2.0 | mg/kg | 08/14/00 | | Arsenic-Low Level, Leachable | \mathtt{BDL} | 0.005 | mg/L | 08/21/00 | | Barium, Leachable | 0.21 | 0.005 | mg/L | 08/17/00 | | Barium, Solid | 110 | 0.10 | mg/kg | 08/14/00 | | Cadmium, Leachable | \mathtt{BDL} | 0.005 | mg/L | 08/17/00 | | Cadmium, Solid | 3.9 | 0.10 | mg/kg | 08/14/00 | | Chromium, Leachable | 0.36 | 0.02 | mg/L | 08/17/00 | | Chromium, Solid | 53 | 0.40 | mg/kg | 08/14/00 | | Copper, Leachable | 0.069 | 0.01 | $_{ m mg/L}$ | 08/17/00 | | Copper, Solid | 170 | 0.20 | mg/kg | 08/14/00 | | Lead, Solid | 49 | 1.0 | mg/kg | 08/14/00 | | Lead-Low Level, Leachable | BDL | 0.005 | mg/L | 08/18/00 | | Nickel, Leachable | 0.63 | 0.02 | mg/L | 08/17/00 | | Nickel, Solid | 51 | 0.40 | mg/kg |
08/14/00 | | Sulfide, Leachable | BDL | 1.0 | ${ m mg/L}$ | 09/05/00 | | Tin, Leachable | BDL | 0.01 | mg/L | 08/17/00 | | Tin, Solid | 270 | 0.20 | mg/kg | 08/14/00 | | Zinc, Leachable | 1.9 | 0.005 | mg/L | 08/17/00 | | Zinc, Solid | 590 | 0.10 | mg/kg | 08/14/00 | | BNA Extraction, Solid | Completed | i | | 08/17/00 | | EP Toxicity Leaching Procedure | Completed | d | | 08/14/00 | | Method 8270, Solid | | | | | | Bis (2-ethylhexyl) phthalate | BDL | 330 | ug/kg | 08/25/00 | | Benzyl Alcohol | \mathtt{BDL} | 330 | ug/kg | 08/25/00 | | Volatile Organic Compounds, Solid | | | | | | Trichlorofluoromethane | \mathtt{BDL} | 10 | ug/kg | 08/21/00 | | Acetone | \mathtt{BDL} | 25 · | ug/kg | 08/21/00 | | Methylene Chloride | \mathtt{BDL} | 10 | ug/kg | 08/21/00 | | 2 -Butanone | \mathtt{BDL} | 10 | ug/kg | 08/21/00 | | 1,1,1-Trichloroethane | \mathtt{BDL} | 10 | ug/kg | 08/21/00 | | Trichloroethene | \mathtt{BDL} | 10 | ug/kg | 08/21/00 | | Toluene | \mathtt{BDL} | 10 | ug/kg | 08/21/00 | | Tetrachoroethylene | BDL | 10 | ug/kg | 08/21/00 | | | | | | | Location Collected: Huntingdon Ave., Waterbury, CT Date Sample Collected: 08/10/00 Sample Description: CC026/NMP EAS Sample Number: 00080149-16 LIMS ID Number: AB09189 Date Sample Received: 08/10/00 Client Project Number: MAC0030.RC | | | | Detection | Detection | | | |---------------|---|----------------|-----------|-----------|----------|--| | Parameter | | Data | Limit | Units | Date | | | Chlorobenzene | | BDL | 10 | ug/kg | 08/21/00 | | | Ethylbenzene | | BDL | 10 | ug/kg | 08/21/00 | | | m/p-Xylene | | \mathtt{BDL} | 10 | ug/kg | 08/21/00 | | | 0-Xylene | • | BDL | 10 | ug/kg | 08/21/00 | | | Isobutanol | | \mathtt{BDL} | 50 | ug/kg | 08/21/00 | | Location Collected: Huntingdon Ave., Waterbury, CT Date Sample Collected: 08/10/00 Sample Description: CC027/NMP EAS Sample Number: 00080149-17 LIMS ID Number: AB09190 Date Sample Received: 08/10/00 Client Project Number: MAC0030.RC | Parameter | Data | Detection
Limit | Units | Analysis
Date | |-----------------------------------|----------------|--------------------|----------|------------------| | Cyanide, Leachable | BDL | 0.15 | mg/L | 08/18/00 | | Cyanide, Solid | BDL | 5.0 | mg/kg | 08/18/00 | | Sulfide-Total, Solid | 320 | 10 | mg/kg | 09/05/00 | | Arsenic, Solid | BDL | 2.0 | mg/kg | 08/14/00 | | Arsenic-Low Level, Leachable | \mathtt{BDL} | 0.005 | mg/L | 08/21/00 | | Barium, Leachable | 0.33 | 0.005 | mg/L | 08/17/00 | | Barium, Solid | 50 | 0.10 | mg/kg | 08/14/00 | | Cadmium, Leachable | \mathtt{BDL} | 0.005 | mg/L | 08/17/00 | | Cadmium, Solid | 2.4 | 0.10 | mg/kg | 08/14/00 | | Chromium, Leachable | 0.057 | 0.02 | mg/L | 08/17/00 | | Chromium, Solid | 55 | 0.40 | mg/kg | 08/14/00 | | Copper, Leachable | 0.061 | 0.01 | mg/L | 08/17/00 | | Copper, Solid | 160 | 0.20 | mg/kg | 08/14/00 | | Lead, Solid | 51 | 1.0 | mg/kg | 08/14/00 | | Lead-Low Level, Leachable | 0.016 | 0.005 | mg/L | 08/18/00 | | Nickel, Leachable | 0.61 | 0.02 | mg/L | 08/17/00 | | Nickel, Solid | 58 | 0.40 | mg/kg | 08/14/00 | | Sulfide, Leachable | 3.6 | 1.0 | mg/L | 09/05/00 | | Tin, Leachable | BDL | 0.01 | mg/L | 08/17/00 | | Tin, Solid | 90 | 0.20 | mg/kg | 08/14/00 | | Zinc, Leachable | 5.0 | 0.005 | mg/L | 08/17/00 | | Zinc, Solid | 620 | 0.10 | mg/kg | 08/14/00 | | BNA Extraction, Solid | Completed | | 5 - 5 | 08/17/00 | | EP Toxicity Leaching Procedure | Completed | | | 08/14/00 | | Method 8270, Solid | | | | • | | Bis (2-ethylhexyl) phthalate | 600 | 330 | ug/kg | 08/25/00 | | Benzyl Alcohol | BDL | 330 | ug/kg | 08/25/00 | | Volatile Organic Compounds, Solid | • | | | | | Trichlorofluoromethane | BDL | 10 | ug/kg | 08/21/00 | | Acetone | \mathtt{BDL} | 25 | ug/kg | 08/21/00 | | Methylene Chloride | BDL | 10 | ug/kg | 08/21/00 | | 2 -Butanone | \mathtt{BDL} | 10 | ug/kg | 08/21/00 | | 1, 1, 1-Trichloroethane | BDL | 10 | ug/kg | 08/21/00 | | Trichloroethene | BDL | 10 | ug/kg | 08/21/00 | | Toluene | BDL | 10 | ug/kg | 08/21/00 | | Tetrachoroethylene | BDL | 10 | ug/kg | 08/21/00 | | | | • | <u> </u> | | Location Collected: Huntingdon Ave., Waterbury, CT Date Sample Collected: 08/10/00 Sample Description: CC027/NMP EAS Sample Number: 00080149-17 LIMS ID Number: AB09190 Date Sample Received: 08/10/00 Client Project Number: MAC0030.RC | | | Detection | | Analysis | |---------------|----------------|-----------|-------|----------| | Parameter | Data | Limit | Units | Date | | Chlorobenzene | BDL | 10 | ug/kg | 08/21/00 | | Ethylbenzene | \mathtt{BDL} | 10 | ug/kg | 08/21/00 | | m/p-Xylene | BDL | 10 | ug/kg | 08/21/00 | | 0-Xylene | BDL | 10 | ug/kg | 08/21/00 | | Isobutanol | BDL | 50 | ug/kg | 08/21/00 | Location Collected: Huntingdon Ave., Waterbury, CT Date Sample Collected: 08/10/00 Sample Description: CC028/NMP EAS Sample Number: 00080149-18 LIMS ID Number: AB09191 Date Sample Received: 08/10/00 Client Project Number: MAC0030.RC | | | Detection | | Analysis | |-----------------------------------|----------------|----------------------|-------|----------| | Parameter | Data | Limit | Units | Date | | Cyanide, Leachable | BDL | 0.15 | mg/L | 08/18/00 | | Cyanide, Solid | BDL | 5.0 | mg/kg | 08/18/00 | | Arsenic, Solid | 5.2 | 2.0 | mg/kg | 08/14/00 | | Arsenic-Low Level, Leachable | \mathtt{BDL} | 0.005 | mg/L | 08/21/00 | | Barium, Leachable | 0.013 | 0.005 | mg/L | 08/24/00 | | Barium, Solid | 120 | 0.10 | mg/kg | 08/14/00 | | Cadmium, Leachable | BDL | 0.005 | mg/L | 08/24/00 | | Cadmium, Solid | 3.7 | 0.10 | mg/kg | 08/14/00 | | Chromium, Leachable | 0.062 | 0.02 | mg/L | 08/24/00 | | Chromium, Solid | 48 | 0.40 | mg/kg | 08/14/00 | | Copper, Leachable | 0.36 | 0.01 | mg/L | 08/24/00 | | Copper, Solid | 130 | 0.20 | mg/kg | 08/14/00 | | Lead, Solid | 40 | 1.0 | mg/kg | 08/14/00 | | Lead-Low Level, Leachable | 0.012 | 0.005 | mg/L | 08/18/00 | | Nickel, Leachable | 0.12 | 0.02 | mg/L | 08/24/00 | | Nickel, Solid | 42 | 0.40 | mg/kg | 08/14/00 | | Sulfide, Leachable | BDL | 1.0 | mg/L | 09/05/00 | | Tin, Leachable | BDL | 0.01 | mg/L | 08/24/00 | | Tin, Solid | 1000 | 0.20 | mg/kg | 08/14/00 | | Zinc, Leachable | 3.8 | 0.005 | mg/L | 08/24/00 | | Zinc, Solid | 510 | 0.10 | mg/kg | 08/14/00 | | BNA Extraction, Solid | Completed | ì | • | 08/17/00 | | EP Toxicity Leaching Procedure | Completed | \mathbf{l}_{\cdot} | | 08/14/00 | | Method 8270, Solid | | | • | • • | | Bis (2-ethylhexyl) phthalate | 64000 | 330 | ug/kg | 08/28/00 | | Benzyl Alcohol | BDL | 330 | ug/kg | 08/28/00 | | Volatile Organic Compounds, Solid | | | - | • | | Trichlorofluoromethane | BDL | 10 | ug/kg | 08/21/00 | | Acetone | BDL | 25 | ug/kg | 08/21/00 | | Methylene Chloride | BDL | 10 | ug/kg | 08/21/00 | | 2 -Butanone | BDL | 10 | ug/kg | 08/21/00 | | 1,1,1-Trichloroethane | BDL | 10 | ug/kg | 08/21/00 | | Trichloroethene | BDL | 10 | ug/kg | 08/21/00 | | Toluene | BDL | 10 | ug/kg | 08/21/00 | | Tetrachoroethylene | BDL | 10 | ug/kg | 08/21/00 | | Chlorobenzene | \mathtt{BDL} | 10 | ug/kg | 08/21/00 | | | | | | • | Location Collected: Huntingdon Ave., Waterbury, CT Date Sample Collected: 08/10/00 Sample Description: CC028/NMP EAS Sample Number: 00080149-18 LIMS ID Number: AB09191 Date Sample Received: 08/10/00 Client Project Number: MAC0030.RC | . • | | Detection | | Analysis | |--------------|----------------|-----------|-------|----------| | Parameter | Data | Limit | Units | Date | | Ethylbenzene | BDL | 10 | ug/kg | 08/21/00 | | m/p-Xylene | BDL | 10 | ug/kg | 08/21/00 | | 0-Xylene | \mathtt{BDL} | 10 | ug/kg | 08/21/00 | | Isobutanol | BDL | 50 | ug/kg | 08/21/00 | Location Collected: Huntingdon Ave., Waterbury, CT Date Sample Collected: 08/10/00 Sample Description: W001/TRIP EAS Sample Number: 00080149-19 LIMS ID Number: AB09192 Date Sample Received: 08/10/00 Client Project Number: MAC0030.RC | | | Detection | | Analysis | |-----------------------------------|----------------|-----------|---------------|-----------| | Parameter | Data | Limit | Units | Date | | Cyanide, Water | BDL | 0.01 | mg/L | 08/18/00 | | Sulfide, Water | \mathtt{BDL} | 10 | mg/L | 08/17/00 | | Arsenic-Low Level, Water | BDL | 0.005 | mg/L | 08/21/00 | | Barium, Water | \mathtt{BDL} | 0.005 | mg/L | 08/16/00 | | Cadmium, Water | BDL | 0.005 | mg/L | .08/16/00 | | Chromium, Water | \mathtt{BDL} | 0.02 | mg/L | 08/16/00 | | Copper, Water | BDL | 0.01 | mg/L | 08/16/00 | | Lead-Low Level, Water | BDL | 0.005 | mg/L | 08/18/00 | | Nickel, Water | \mathtt{BDL} | 0.02 | mg/L | 08/16/00 | | Tin, Water | \mathtt{BDL} | 0.01 | mg/L | 08/16/00 | | Zinc, Water | \mathtt{BDL} | 0.005 | mg/L | 08/16/00 | | BNA Extraction, Water | Complete | d | G . 1- | 08/14/00 | | Method 8270, Water | | | | 00/1200 | | Di-n-butylphthalate | BDL | 10 | ug/L | 08/22/00 | | Butylbenzylphthalate | \mathtt{BDL} | 10 | ug/L | 08/22/00 | | Bis(2-ethylhexyl)phthalate | \mathtt{BDL} | 10 | ug/L | 08/22/00 | | Di-n-octylphthalate | \mathtt{BDL} | 10 | ug/L | 08/22/00 | | Volatile Organic Compounds, Water | | • | | , | | Trichlorofluoromethane | \mathtt{BDL} | 0.50 | ug/L | 08/22/00 | | Acetone | BDL | 5.0 | ug/L | 08/22/00 | | Methylene Chloride | BDL | 0.50 | ug/L | 08/22/00 | | 2 -Butanone | BDL | 0.50 | ug/L | 08/22/00 | | 1, 1, 1-Trichloroethane | \mathtt{BDL} | 0.50 | ug/L | 08/22/00 | | Trichloroethene | \mathtt{BDL} | 0.50 | ug/L | 08/22/00 | | 4-Methyl-2-Pentanone | \mathtt{BDL} | 0.50 | ug/L | 08/22/00 | | Toluene | BDL | 0.50 | ug/L | 08/22/00 | | Tetrachoroethylene | BDL | 0.50 | ug/L | 08/22/00 | | Chlorobenzene | \mathtt{BDL} | 0.50 | ug/L | 08/22/00 | | Ethylbenzene | BDL | 0.50 | ug/L | 08/22/00 | | m/p-Xylene | \mathtt{BDL} | 0.50 | ug/L | 08/22/00 | | 0-Xylene | BDL | 0.50 | ug/L | 08/22/00 | | Isobutanol | \mathtt{BDL} | 50 | ug/L | 08/22/00 | | 1,4-Dioxane | \mathtt{BDL} | 100 | ug/L | 08/22/00 | | | | | <u> </u> | | Location Collected: Huntingdon Ave., Waterbury, CT Date Sample Collected: 08/10/00
Sample Description: W002/EQUIP EAS Sample Number: 00080149-20 LIMS ID Number: AB09193 Date Sample Received: 08/10/00 Client Project Number: MAC0030.RC | | | Detection | | Analysis | |-----------------------------------|----------------|-----------|--------------------------|----------| | Parameter | Data | Limit | Units | Date | | Cyanide, Water | BDL | 0.01 | mg/L | 08/18/00 | | Sulfide, Water | \mathtt{BDL} | 10 | mg/L | 08/17/00 | | Arsenic-Low Level, Water | \mathtt{BDL} | 0.005 | ${\sf mg/L}$ | 08/21/00 | | Barium, Water | \mathtt{BDL} | 0.005 | mg/L | 08/16/00 | | Cadmium, Water | \mathtt{BDL} | 0.005 | ${ m mg/L}$ | 08/16/00 | | Chromium, Water | BDL | 0.02 | ${\sf mg/L}$ | 08/16/00 | | Copper, Water | BDL | 0.01 | ${ t mg/L}$ | 08/16/00 | | Lead-Low Level, Water | \mathtt{BDL} | 0.005 | mg/L | 08/18/00 | | Nickel, Water | BDL | 0.02 | ${ t mg/L}$ | 08/16/00 | | Tin, Water | BDL | 0.01 | ${ m mg/L}$ | 08/16/00 | | Zinc, Water | \mathtt{BDL} | 0.005 | mg/L | 08/16/00 | | BNA Extraction, Water | Completed | | | 08/14/00 | | _Method 8270, Water | | | | | | Di-n-butylphthalate | BDL | 10 | ug/L | 08/23/00 | | Butylbenzylphthalate | BDL | 10 | ug/L | 08/23/00 | | Bis(2-ethylhexyl)phthalate | BDL | 10 | ug/L | 08/23/00 | | Di-n-octylphthalate | \mathtt{BDL} | 10 | ug/L | 08/23/00 | | Volatile Organic Compounds, Water | | | | • | | Trichlorofluoromethane | \mathtt{BDL} | 0.50 | ug/L | 08/22/00 | | Acetone | BDL | 5.0 | ug/L | 08/22/00 | | Methylene Chloride | \mathtt{BDL} | 0.50 | ug/L | 08/22/00 | | 2 -Butanone | \mathtt{BDL} | 0.50 | ug/L | 08/22/00 | | 1,1,1-Trichloroethane | BDL | 0.50 | ug/L | 08/22/00 | | Trichloroethene | BDL | 0.50 | ug/L | 08/22/00 | | 4-Methyl-2-Pentanone | \mathtt{BDL} | 0.50 | ug/L | 08/22/00 | | Toluene | BDL | 0.50 | ug/L | 08/22/00 | | Tetrachoroethylene | BDL | 0.50 | ug/L | 08/22/00 | | Chlorobenzene | \mathtt{BDL} | 0.50 | ug/L | 08/22/00 | | Ethylbenzene | \mathtt{BDL} | 0.50 | ug/L | 08/22/00 | | m/p-Xylene | \mathtt{BDL} | 0.50 | ug/L | 08/22/00 | | 0-Xylene | BDL | 0.50 | ug/L | 08/22/00 | | Isobutanol | BDL | 50 | ug/L | 08/22/00 | | 1,4-Dioxane | BDL | 100 | \mathtt{ug}/\mathtt{L} | 08/22/00 | EAS Project Number: 00080149 Location Collected: Huntingdon Avenue, Waterbury, CT ## **EAS Certifications:** Connecticut Certified Laboratory Number: PH 0558 Massachusetts Certified Laboratory Number: M-CT020 Maine Certified Laboratory Number: CT 020 New Jersey Certified Laboratory Number: 46647 New York Certified Laboratory Number: 10916 Rhode Island Certified Number: 139 ## The enclosed analyses were conducted in accordance with: - 1. APHA Standard Methods for the Examination of Water and Wastewater, 18th Edition, 1992 - 2. Clean Water Act, List of Approved Test Procedures, 40 CFR - 3. EPA Test Methods for the Evaluation of solid Waste, SW-846, 3rd Edition, January 1998 HRP Associates, Inc. 167 New Britain Avenue Plainville, CT 06062 Phone: 860-793-6899 **HRP** Sheet MAC 0030.20 Job Number | ax: 8 | 60-793-687 | 1 | | С | HAIN O | F CU | JST | ODY
——— | Project | Manager | ZDI | 4 | |----------------|--------------------|-------------------|-----------------|-------|-------------|-----------|--------------|-----------------|---------|-------------|--------|----------| | Place & Addr | ess of Collection | MACI | DERMI | 0,10 | د | | Sampl | ers Name (Sign: | aturne) | 10/ | 7 | | | HLATI | noon A | | | | P4.C7 | | | | hul | 00 | my | | | Sample
I.D. | Sample Location | Container
Type | Total
Volume | P | reservative | | Date | Time | Sam | ple Matrix | R | emarks | | CC 011 | NMP | 6 | 807 | c | DOL | 5, | ite | MADE | Conce | ZETÉ | CHIP | SAMPLLS | | CC012 | 1 | | 1 | | | | | | | 1 | | | | 60013 | | | | | | | | | | | | | | Ct014 | | | | | 1 | | | * | | | | | | CC 015 | 4 | | | | | | , | 11/11 | | | | | | 11317 | SCIDER STEIR | | | | | | į | ii | | | | | | 10017 | | | | | | | ſ | | | | | | | Cc018 | | | | | | | 1 | ¥/ | | | | | | CC 019 | | | | | | | i | poper | | | | | | CC020 | | ~ | * | | * | | \ | + | 7 | | 4 | | | Relinquished E | By (Signature) | Lile | a Ch | | Recei | ved By (S | Signature | | AL | Date S- | 10-W T | ime 3:30 | | Relinquished E | By (Signature) | | | | Recei | ved By (S | Signature | | 10 | Date | | ime | | Name & Addr | ess of Laboratory: | CA | 5 LI | 1-B | M | 'DDL | E Bl | 21 | CT | | | | | Paramete | ers | | | | | | Samp | | | | | | | BARIVAT -1 | MEL CCO | ii ccc | 212 00 | Y 013 | CC 014 | | 015 | CC 016 | CC017 | C(018 | CC019 | C2020 | | - July 1 | | | | | | | | | | | | + | | Parameters | | | | | Samp | le ID | | | | | |----------------------------|-------|-------|---|------------|------------|----------|-------|---|----------|-------------| | D M & 3 | CCOII | CC012 | | CC 014 | CC 015 | CC016 | CC017 | | CC019 | CLOZO | | BARIVA - M&L | | 7(| <u>, , , , , , , , , , , , , , , , , , , </u> | - X
- V | ¥ | X | X | × | X | X | | CADMIUM - M = L | X | X | X | X | , , | と | | | <u> </u> | ^ | | CHROMEN MIL | × | * | X | X | Χ | X | X | χ | X | X | | Cu mil | У | K | X | X | X | <i>Y</i> | メ | X | γ | Χ | | Pb mil | X | X | X | X | χ | Y | メ | У | Ϋ́ | Y | | N, mil | Υ | X | X | X. | Y | Y | × | × | Х | > | | Sn mil | X | X | X | X | X | Y | X | × | × | X | | Zn mil | | χ | X | χ· | X | X | X | × | × | X | | CYANIDE MIL | X | X | Ä. | X | Ϋ́ | X | X | ~ | X | X | | Suffe mil | χ | χ | X | Х | X | Y | × | x | X | X | | ACETONE -M | Υ | χ | X | Y | X / | X | У | X | × | × | | 2-BUIANONE . | Х | Х | X | X | X | Y | × | * | × | X | | CHI DROBENZENE | m X | Х | Х | X | X | X | × | Х | λ | Х | | 1,4 - DIDXANE - | H | | | | | X | Х | Y | ~ | À | | ETAYL BENZEW | -M X | X | Х | X | X | X | X | メ | X | Y | | Remarks:
Bewitte Acoust | мХ | Х | Х | Х | X | | | | | | L' LEACHATE BY EP TOXICITY M: MASS ANALYSIS P - Plastic A - Amber T - TCLP Analysis M - Mass Analysis S - SPLP Analysis G - Glass Abbreviations: HRP Associates, Inc. 167 New Britain Avenue Plainville, CT 06062 # **HRP** Sheet Z of U Job Number MAC ON 3D. R.C. | 200-79 ax: 860 | | . | | CHAIN O | F CUSTO | DDY | Project | Manager | ,ED | Μ | | |--|-----------------|--------------|--------------|--|-------------------|---------------|-------------|-----------|----------|----------------|--| | Place & Address of C | ollection / | PACDER | emin, | Inc | Sample | rs Name (8ig) | ature) | 200 | ? / | / | | | HUNTING | DON A | VE W | ATERB | LLY, CT | | In | 10 | (-K | my | | ▋. | | Sample Sample
1.D. | e Location C | | otal
lume | Preservative | Date | Time | Samp | le Matrix | 1 | Remarks | | | CC DIL N | mp | 68 | 62 | COOL | Sholar | lian | CONC | LEIE | CHIP | SAMPLE | 1 | | CCOIZ . | | 1 | ı | | į i | , | | <u> </u> | | 1 | | | CC 013 | | | | | | | | | | | _ | | CCOH | | | | | | - | | | | ·T | | | CC 015 | P | | | | | program | | | | | | | ccoil Soid | र जार ह | | | | | } | | | | |] | | CC017 | 1 | | | | | | | | | |] | | CC018 | | | | | | , i | | | | | | | CC019 | 1 | | | | | F.00. | | | | 7 | ╢ | | (6020 | 1 | ↓ . | 4 | × | 7 | 1 | | | 7 | b |] | | Relinquished By (Signa | ture) | 10 | Chint | Receive | ed By (Signature) | | 1000 | Date 5 | 10·W | fime 3, cd | Am | | Relinquished By (Signa | ture) | | | Receive | ed By (Signature) | | . 0 | Date | 1 | Time | | | Name & Address of La | boratory: | CAS | CARS | MID | DUFBU | 14,0 | T- 1 | | | | | | Parameters | | CCOII | ((c)) | (1013 | CCC 14 Sample | 190015 | ccul | | 166015 | 100015 | ccol | | SCRUTHAUL - M | | X | 7 | Y | X | 7 | X | χ. | X_ | 1 | X | | PRINYICH CALL | re-M | Χ | ¥ | 4 | × | X | X | . × | X | × | X | | 4- METHAL-7-PE | \$ I | | | | | | X | X | X | X | × | | TiteAchiecount | li . | X | Х | Х | × | × | X | Х | X | X | γ | | TOLLENE-M | | × | X. | × | х | × | X | У | Х | X | X | | 1,1,1-TEXCHIPECET | HAME M | X | * | X | * | × | Y | X | | × | X | | TRICHEROFILMEN | () | × | À | × | X | X | Y | У | × | X | X | | TEICHLACOCTAY | lt . | 7 | 7 | X | X | X | Y | * | X | X | X | | ALENE . W | | X | × | × | X | × | Y | X | Y | X | X | | BIS/2-ETHYLHER | A \ D = 1 41.15 | X M. | X | × | × | У | X | X | X | X | × | | BUTTE BOUTHE | · · | | · | | | | X | X | × | X | × | | DI-U - BUTTIPAT | | | | | | | X | <u> </u> | × | X | X | | <u>(גין וצדעם - ט-וכ</u>
1)ן- ארז ארדעם - א | | | | - | | | X | <u> </u> | X | X | y | | | Hui Bit . W | Х | × | X | X | X | | | <u> </u> | ^ | | | ARSENK MIL | | | | | | | | | | | | | D | | | | 1 | | | | | <u> </u> | | | | Remarks: | | | | | | | | | | | | № 11956 P - Plastic L=LEACHATE A - Amber M - Mass Analysis EP TOXICILY T - TCLP Analysis G - Glass Abbreviations: S - SPLP Analysis HRP Associates, Inc. 167 New Britain Avenue Plainville, CT 06062 **HRP** Sheet 3 of 4 Phone: 860-793-6899 ⁷ax: 860-793-6871 **CHAIN OF CUSTODY** Job Number MAC 0030. EC EDM **Project Manager** | Place & Addr | ess of Collection | MAC DE | ZMID, | Inc | Sampler | s Name (Signa | <i>/</i>) . | 7 | |----------------|--------------------|-------------------|-----------------|--------------|----------------|---------------|---------------|---------------| | HUN | TINGDON | Ave | WAJ | TUBURY, C. | <i></i> | | hilack | worth | | Sample
I.D. | Sample Location | Container
Type | Total
Volume | Preservative | Date | Time | Sample Matrix | Remarks | | CC OZI | NMP | 6 | 822 | COOL | ا الم | 2140 | CONCRETE | CHIP SAMPLES | | C1 011 | | | į | | l i | 1 | | | | 10013 | | | | } | | | | · / | | CCDLY | | | | | | , jèm | | | | 50015 | | | | | | , <u>V</u> | | | | CC026 | | | | | Ì | <u>}</u> , | | / | | 11017 | | | | · | |) Pl | | | | 65028 | 4 | 4 | * | 4 | | <u></u> | \ | 4 | | W001 | TRIP | 6,1 | 232 | HOU | | € åsn |
WATER | BLANK | | WOOZ | COUP | 11 | *1 | 4 " | Ÿ | -7 j yes | WATER | BLA-K | | Relinquished (| ly (Signature) | hil | a Clu | Received | By (Signature) | 100 | Date 8-10 |)(i) Time 3:W | | Relinquished I | By (Signature) | | · · · | Received | By (Signature) | | Date | Time | | Name & Addr | ess of Laboratory: | EAS | LAB | s Mi | DOLEBL | JRY, C | 27 | | | Parameters | C | | | | Samp | ole 10 | | | | | |--------------------|------------|-----------|---------------|----------|----------|----------|----------|-------------|--------|------| | | Ccori | CLOLT | C (013 | CCOZY | C(025 | CL 026 | (1027 | 66028 | Webs | Wool | | Cd mil | X | Χ | Х | X | · X | У | X | Υ | χ | y | | Cr - mil | χ | Y | X | X | γ. | . y | X | У | γ | 4 | | Cu - mil | Y | X | X | X | X | У | Х | X | λ | X | | P6 - m;1 | | Х | X | X | X | У | У | 1 | γ | χ | | N m:L | Υ | × | X | X | · Y | У | Х | X | Y | У | | Sn - Mil | X | X | * | X | X | У | У | 1 | λ | X | | Zn - migh | Y | X | X | У | × | X | X | X | X | У | | CYANDE - MIL | X | X | X | X | × | X | Х | r | У | X | | Suffice mil | X | X | Y | × | X | X | X | X | X | X | | Acè TONE - m | X | × | بلر ا | X | 74 | X | Y | X | У | . X | | Z-BUTGARAET | | У | X | X | X | У | X | Х | X | X | | CHIEFORENZENE- | и X | Х | X | X | X | X | X | Y | Х | À | | 1,4-DIDYANE - | | | | | | , | | · | X | * * | | ETHN BENZEUE | m X | Χ | X | Χ | X | X | X | Ý | X | Х | | Remarks: Accorded | -m X | × | X | Х | X | X | X | Х | X | X | | BARIUM mil | X | X | × | Х | X | X | X | Х | X | Х | | | = LEACHATE | gy Ei | Toxicit | Y M | = MAS | s Anne | 1515 | | | | | Abbreviations: G - | Glass P | - Plastic | | T - TCLI | Analysis | M - Mass | Analysis | S - SPLP An | alysis | • | № 11955 HRP Associates, Inc. 167 New Britain Avenue Plainville, CT 06062 # **HRP** Job Number MAC 0030.20 Sheet | | - | 702 60 | | | 1 | | | | JOD NU | mber i | THE CO. | 50.70 | |---|------------|-----------------|-----------------|-----------|---------------|-------------------|----------------|-----------------|---|--------------|-------------|----------------| | Phone: | | 793-68
3-687 | | | (| CHAIN OF | CUST | ODY | Project | Manager | RD | M | | Place & Addre | ess of Co | llection | MAC | Diza | nib lu | C | Samp | lers Name (Sign | aturel | / | 00 | | | HUN | 711/6 | DOW 1 | 1v€ | Wa | TERBUR | 1 CT | | | his | 1// | -tim | | | Sample
(.D. | | Location | Contain
Type | er 1 | otal
siume | Preservative | Date | Time | Sam | ple Matrix | Я | emarks | | CC 021 | N | MP | 6 | ৰ্ম | 50 | COOL | Spiral (| MEGN | Con | CRETE | Chip | SAMPILS | | 16 622 | | 1 | _1_ | | 1 | | 1 1 | Ĭ | | 1 | | (| | 1003 | | | | | | | 1 | 1 | | | | | | ८०२५ | | | | | | | | \$ 1 minut | | | | | | 1025 | | | | | | | | | | | | | | 2507 | | | | | | | | * | | | | | | (1027 | | } | | | | | | 71.80 | | <u> </u> | | | | 1018 | | ¥ | 4 | ' | b | | | | 1 | ,
 | 1 | • | | VW1 | TR | ·P | 6 P | 2 | e+ Ci | OOL HEL | | 39,000 | WA | 162 | Bu | ANK_ | | W002 | EGI | VIP. | 7 L | بل | | * | 4 | 3,4 | 60 | <u>, t</u> | | Aux_ | | Relinquished B | By (Signat | ure) | mis | 100 | - fing | | d By (Signatur | <u></u> | 41 | Date 3. | (0 Cd) I | ime 3:00 / | | Relinquished B | ly (Signat | ure) | | | ·· · · · · | Receive | d By (Signatur | el | · · · · · · · · · · · · · · · · · · · | Date | T | ime | | Name & Addre | ess of Lab | ooratory: | | 115 | LARS | M: | DDI ERU | ey CT | •
 | | | | | Paramete | ers | | | | | | Samp | ole ID | , | , | | + | | | | | C | COZI | CCOZZ | cc 023 | Cc 024 | CL025 | CC 026 | Cc 027 | 00018 | | | BORVIAN | 01- AV | | | χ | Y | X | X | * | オ | X | X | X | | FTHILEM | ECHLO | 115 M | | <u> </u> | γ | X | X | | X | X | X | λ. | | 1-1/k1111 | 11-2-9 | at Anne | . # | | | | | | | | | X | | et pac hu | A ETH | 112~2. | 131 | <u> X</u> | Y | X | <u> メ</u> | X | × | X | X | X | | ocutae | | | | X | X | Х | <u>X</u> | X | Y | X | X | X | | sh) Ferch | Herre | HALE - 1 | 1 | X | X | X | × | X | × | X
Y | X | X | | LICHIUPO | FLUER | mezh pre | -[4 | X | X | ×. | X | ኦ | X | У | X | X | | FICHIERE | E) H YL | -E - W | 1 | × | X | X | Χ | χ | X | X | X | X. | | X/LEN | E ±M | | | χ | X | X | X | X | X | X | X | X | | 315 (z-r7H | ril Hr | ואדתק(ור | 1 A Z - M | 1 X | - X | X | y | × | አ | Х | Y | X | | UTYL BEN | 15 Jr | भू भिन्नरभग | - IM | | | | ! | | | | | X | | | 71. 17 | HALAH - | m | | | | | | | | | X | | | | | | | Es words | W.C. 2. 202 - 520 | | | | | | X | | 4-11-Bur | 57L 84 | JUNTAIL | | | | 1 | 1,4 | V | V | 1/ | 1 | | | 4-11-825
4-11-061 | | | | X | × | X | X | X | X | X | X | X | | A-N-BUT
H-N-OCI
ARSCMC
lemarks: | mil | | | Х | X | <u> </u> | У. | | , <u>, , , , , , , , , , , , , , , , , , </u> | X | <u> </u> | X | | A-N-BUT
A-N- OC
ARSCUIC
Remarks: | mil | -M _ | | <u></u> | | X X TO TO | | · | | X | <u> </u> | X | Abbreviations: G - Glass P - Plastic T - TCLP Analysis A - Amber M - Mass Analysis S - SPLP Analysis # APPENDIX K October 3, 2000 Sampling Results e\rdm\m\rcra closure summary HRP Associates 2 October 17, 2000 MACDERMID, INC. 245 Freight Street Waterbury, CT 06702 Attention: Mr. Greg Strong EAS Project Number: 00100036 Location Collected: MacDermid, Huntingdon Ave, Waterbury Copies of this report and the supporting computer stored data are retained in our files in the event they are required for future reference. Any sample submitted to our laboratory will be retained for a maximum of thirty (30) days from receipt of the report. All analytical data, unless otherwise specified, is reported on a wet weight (as received) basis. Our laboratory is a multi-state Certified Public Health Laboratory, offering a full range of analytical services that include: Water and Wastewater Analysis -Hazardous Waste Analysis (RCRA) Full Priority Pollutant Analysis Drinking Water Analysis Laboratory Director end Location Collected: MacDermid, Huntingdon Ave, Waterbury Date Sample Collected: 10/03/00 Sample Description: CC029/NMP Room EAS Sample Number: 00100036-01 LIMS ID Number: AB11556 Date Sample Received: 10/03/00 Client Project Number: MAC0030.RC | | | Detection | | Analysis | |--------------------------------|-----------|-----------|-------------|----------| | Parameter | Data | Limit | Units | Date | | Chromium, Leachable | 0.04 | 0.02 | mg/L | 10/09/00 | | Nickel, Leachable | 0.46 | 0.02 | ${ m mg/L}$ | 10/09/00 | | Zinc, Leachable | 4.7 | 0.005 | mg/L | 10/09/00 | | BNA Extraction, Leachable | Complete | d | | 10/06/00 | | EP Toxicity Leaching Procedure | Completed | d · | | 10/03/00 | | Method 8270, Leachable | | | | | | Bis(2-ethylhexyl)phthalate | BDL | 10 | ug/L | 10/11/00 | Location Collected: MacDermid, Huntingdon Ave, Waterbury Date Sample Collected: 10/03/00 Sample Description: CC030/NMP Room EAS Sample Number: 00100036-02 LIMS ID Number: AB11557 Date Sample Received: 10/03/00 Client Project Number: MAC0030.RC | | | Detection | | Analysis | |--------------------------------|----------------|-----------|-------------|-------------| | Parameter | Data | Limit | Units | <u>Date</u> | | Chromium, Leachable | 0.053 | 0.02 | ${ m mg/L}$ | 10/09/00 | | Nickel, Leachable | 0.036 | 0.02 | mg/L | 10/09/00 | | Zinc, Leachable | 0.41 | 0.005 | ${ m mg/L}$ | 10/09/00 | | BNA Extraction, Leachable | Completed | l | | 10/06/00 | | EP Toxicity Leaching Procedure | Completed | l | | 10/03/00 | | Method 8270, Leachable | | | | | | Bis(2-ethylhexyl)phthalate | \mathtt{BDL} | 10 | ug/L | 10/11/00 | Location Collected: MacDermid, Huntingdon Ave, Waterbury ➤ Date Sample Collected: 10/03/00 Sample Description: CC031/NMP Room EAS Sample Number: 00100036-03 LIMS ID Number: AB11558 Date Sample Received: 10/03/00 Client Project Number: MAC0030.RC | | | Detection | | Analysis | |--------------------------------|----------------|-----------|-------------|----------| | Parameter | Data | Limit | Units | Date | | Chromium, Leachable | BDL | 0.02 | mg/L | 10/09/00 | | Nickel, Leachable | 0.38 | 0.02 | ${ t mg/L}$ | 10/09/00 | | Zinc, Leachable | 2.1 | 0.005 | ${ m mg/L}$ | 10/09/00 | | BNA Extraction, Leachable | Completed | | | 10/06/00 | | EP Toxicity Leaching Procedure | Completed | | | 10/03/00 | | Method 8270, Leachable | | | | | | Bis(2-ethylhexyl)phthalate | \mathtt{BDL} | 10 | ug/L | 10/11/00 | Location Collected: MacDermid, Huntingdon Ave, Waterbury ___Date Sample Collected: 10/03/00 Sample Description: CC032/NMP Room EAS Sample Number: 00100036-04 LIMS ID Number: AB11559 Date Sample Received: 10/03/00 Client Project Number: MAC0030.RC | Parameter | Data | Detection
Limit | Units | Analysis
Date | |--------------------------------|----------------|--------------------|-------|------------------| | Chromium, Leachable | 0.37 | 0.02 | mg/L | 10/09/00 | | Nickel, Leachable | 0.29 | 0.02 | mg/L | 10/09/00 | | Zinc, Leachable | 5.2 | 0.005 | mg/L | 10/09/00 | | BNA Extraction, Leachable | Completed | ŀ | | 10/06/00 | | EP Toxicity Leaching Procedure | Completed | ł | | 10/03/00 | | Method 8270, Leachable | | | | | | Bis(2-ethylhexyl)phthalate | \mathtt{BDL} | 10 | ug/L | 10/11/00 | Location Collected: MacDermid, Huntingdon Ave, Waterbury Date Sample Collected: 10/03/00 Sample Description: CC033/NMP Room EAS Sample Number: 00100036-05 LIMS ID Number: AB11560 Date Sample Received: 10/03/00 Client Project Number: MAC0030.RC | Parameter | Data | Detection
<u>Limit</u> | Units | Analysis
Date | |--------------------------------|----------------|---------------------------|-------|------------------| | Chromium, Leachable | 0.37 | 0.02 | mg/L | 10/09/00 | | Nickel, Leachable | 0.18 | 0.02 | mg/L | 10/09/00 | | Zinc, Leachable | 2.5 | 0.005 | mg/L | 10/09/00 | | BNA Extraction, Leachable | Completed | i | | 10/10/00 | | EP Toxicity Leaching Procedure | Completed | i | | 10/03/00 | | Method 8270, Leachable | | | | | |
Bis(2-ethylhexyl)phthalate | \mathtt{BDL} | 10 | ug/L | 10/11/00 | : MacDermid, Huntingdon Ave, Waterbury cted: 10/03/00 n: CC034/NMP Room ber: 00100036-06 AB11561 ived: 10/03/00 nber: MAC0030.RC | • . | Analysis | | | Detection | | Analysis | |------|----------|---------------------------------------|----------------|-----------|-------------|----------| | uits | Date | | Data | Limit | Units | Date | | ţ/L | 10/09/00 | able | 0.069 | 0.02 | ${f mg/L}$ | 10/09/00 | | ţ/L | 10/09/00 | | 0.40 | 0.02 | mg/ $ m L$ | 10/09/00 | | ţ/L | 10/09/00 | · · · · · · · · · · · · · · · · · · · | 4.0 | 0.005 | ${ m mg/L}$ | 10/09/00 | | | 10/10/00 | ∠eachable | Completed | | | 10/10/00 | | | 10/03/00 | ing Procedure | Completed | | | 10/03/00 | | | | chable | | | | | | ·/L | 10/11/00 | l)phthalate | \mathtt{BDL} | 10 | ug/L | 10/11/00 | Location Collected: MacDermid, Huntingdon Ave, Waterbury Date Sample Collected: 10/03/00 Sample Description: CC034/NMP Room EAS Sample Number: 00100036-06 LIMS ID Number: AB11561 Date Sample Received: 10/03/00 Client Project Number: MAC0030.RC | | | Detection | • | Analysis | |--------------------------------|-----------|-----------|-------------|----------| | Parameter | Data | Limit | Units | Date | | Chromium, Leachable | 0.069 | 0.02 | mg/L | 10/09/00 | | Nickel, Leachable | 0.40 | 0.02 | ${ m mg/L}$ | 10/09/00 | | Zinc, Leachable | 4.0 | 0.005 | ${ m mg/L}$ | 10/09/00 | | BNA Extraction, Leachable | Completed | | • | 10/10/00 | | EP Toxicity Leaching Procedure | Completed | | | 10/03/00 | | Method 8270, Leachable | | | | | | Bis(2-ethylhexyl)phthalate | BDL | 10 | ug/L | 10/11/00 | Location Collected: MacDermid, Huntingdon Ave, Waterbury Date Sample Collected: 10/03/00 Sample Description: CC035/NMP Room EAS Sample Number: 00100036-07 LIMS ID Number: AB11562 Date Sample Received: 10/03/00 Client Project Number: MAC0030.RC | Parameter | Data | Detection
Limit | Units | Analysis
Date | |--------------------------------|-----------|--------------------|-------------|------------------| | Chromium, Leachable | 0.15 | 0.02 | mg/L | 10/09/00 | | Nickel, Leachable | 0.48 | 0.02 | ${ t mg/L}$ | 10/09/00 | | Zinc, Leachable | 4.1 | 0.005 | mg/L | 10/09/00 | | BNA Extraction, Leachable | Completed | l _, | | 10/10/00 | | EP Toxicity Leaching Procedure | Completed | l | | 10/03/00 | | Method 8270, Leachable | | | | | | Bis(2-ethylhexyl)phthalate | BDL | 10 | ug/L | 10/11/00 | Location Collected: MacDermid, Huntingdon Ave, Waterbury Date Sample Collected: 10/03/00 Sample Description: CC036/NMP Room EAS Sample Number: 00100036-08 LIMS ID Number: AB11563 Date Sample Received: 10/03/00 Client Project Number: MAC0030.RC | | | Detection | | Analysis | |--------------------------------|----------------|-----------|--------------|-------------| | Parameter | Data | Limit | Units | <u>Date</u> | | Chromium, Leachable | 0.11 | 0.02 | mg/L | 10/09/00 | | Nickel, Leachable | 0.49 | 0.02 | ${ m mg/L}$ | 10/09/00 | | Zinc, Leachable | 4.6 | 0.005 | ${\sf mg/L}$ | 10/09/00 | | BNA Extraction, Leachable | Complete | d | | 10/10/00 | | EP Toxicity Leaching Procedure | Complete | d | | 10/03/00 | | Method 8270, Leachable | | | | | | Bis(2-ethylhexyl)phthalate | \mathtt{BDL} | 10 | ug/L | 10/11/00 | Location Collected: MacDermid, Huntingdon Ave, Waterbury Date Sample Collected: 10/03/00 Sample Description: CC037/NMP Room EAS Sample Number: 00100036-09 LIMS ID Number: AB11564 Date Sample Received: 10/03/00 Client Project Number: MAC0030.RC | D | D 1 | Detection | TT 1. | Analysis | |--------------------------------|-------------|-----------|--------------|-------------| | Parameter | <u>Data</u> | Limit | <u>Units</u> | <u>Date</u> | | Chromium, Leachable | 0.13 | 0.02 | mg/L | 10/09/00 | | Nickel, Leachable | 0.031 | 0.02 | ${ m mg/L}$ | 10/09/00 | | Zinc, Leachable | 0.013 | 0.005 | ${ m mg/L}$ | 10/09/00 | | BNA Extraction, Leachable | Completed | | | 10/10/00 | | EP Toxicity Leaching Procedure | Completed | | | 10/03/00 | | Method 8270, Leachable | | | | | | Bis(2-ethylhexyl)phthalate | BDL | 10 | ug/L | 10/11/00 | Location Collected: MacDermid, Huntingdon Ave, Waterbury Date Sample Collected: 10/03/00 Sample Description: W001/Trip Blank EAS Sample Number: 00100036-10 LIMS ID Number: AB11565 Date Sample Received: 10/03/00 Client Project Number: MAC0030.RC | Parameter | Data | Detection
Limit | Units | Analysis
Date | |--|--------------------|--------------------|--------------|----------------------| | Chromium, Water
Nickel, Water | BDL
BDL | 0.02
0.02 | mg/L
mg/L | 10/09/00
10/09/00 | | Zinc, Water BNA Extraction, Water Mathed 8870, Water | 0.011
Completed | 0.005 | ${ m mg/L}$ | 10/09/00
10/06/00 | | Method 8270, Water Bis(2-ethylhexyl)phthalate | BDL | 10 | ug/L | 10/11/00 | Location Collected: MacDermid, Huntingdon Ave, Waterbury Date Sample Collected: 10/03/00 Sample Description: W002/Equip. Blank EAS Sample Number: 00100036-11 LIMS ID Number: AB11566 Date Sample Received: 10/03/00 Client Project Number: MAC0030.RC | Parameter | Data | Detection
<u>Limit</u> | Units | Analysis
<u>Date</u> | |----------------------------|----------|---------------------------|-------------|-------------------------| | Chromium, Water | BDL | 0.02 | mg/L | 10/09/00 | | Nickel, Water | BDL | 0.02 | ${ m mg/L}$ | 10/09/00 | | Zinc, Water | 0.012 | 0.005 | mg/L | 10/09/00 | | BNA Extraction, Water | Complete | d | | 10/06/00 | | Method 8270, Water | | | | | | Bis(2-ethylhexyl)phthalate | BDL | 10 | ug/L | 10/11/00 | EAS Project Number: 00100036 Location Collected: MacDermid, Huntingdon Ave, Waterbury #### EAS Certifications: Connecticut Certified Laboratory Number: PH 0558 Massachusetts Certified Laboratory Number: M-CT020 Maine Certified Laboratory Number: CT 020 New Jersey Certified Laboratory Number: 46647 New York Certified Laboratory Number: 10916 Rhode Island Certified Number: 139 ## The enclosed analyses were conducted in accordance with: - 1. APHA Standard Methods for the Examination of Water and Wastewater, 18th Edition, 1992 - 2. Clean Water Act, List of Approved Test Procedures, 40 CFR - 3. EPA Test Methods for the Evaluation of solid Waste, SW-846, 3rd Edition, January 1998 Sheet HRP Associates, Inc. **HRP** of 167 New Britain Avenue Job Number MAC UDZO. PC Plainville, CT 06062 Phone: 860-793-6899 CHAIN OF CUSTODY RDM Fax: 860-793-6871 Project Manager MAC DE EMIN Place & Address of Collection 1-0 Samplers Name (Signature) HUNTINGDON MATERBUT Sample (.D. Container Sample Location Total Preservative Date Time Sample Matrix Remarks CC 029 NMP Rom 802 10/3/00 CODL CONCRETE CC03D CC031 CL037 CC 033 CC034 CC 035 CE 036 CG037 W TRIP BLANK WATE Received By (Signature) Relinquished By (Signature) Date // Time Received By (Signature) Relinquished By (Signature) Date Time (ARS) Name & Address of Laboratory: COMMERCIAL EAS WATERTOWN Sample ID Parameters CC 079 CC 030 CC 031 CL 035 CC032 CL033 CL034 66036 C6037 WOOI LOOUL X X X CHEDMIUM-L X K. ZINC - L ķ X У X X X NICKEL - 1 X X X Χ BIS (Z-ETHYL-HEXYL) PATHAM Remarks: LEACHATE BY CP JOXICITY HAP CONTACT: MILE CHENOWELL P - Plastic - A - Amber T - TCLP Analysis M - Mass Analysis S - SPLP Analysis Abbreviations: Date: March 16, 2001 Rev. No. 0 #### **APPENDIX N** DECEMBER 5, 2000 GEAR STREET SUMP SPILL REPORT e\rdm\mac\mac-0036-ca-aocs HRP Associates. Inc. 79 Elm Street Hartford, CT 06106-5127 http://dep.state.ct.us 3ureau of Waste Management Oil and Chemical Spill Response Division # REPORT OF PETROLEUM OR CHEMICAL PRODUCT DISCHARGE, SPILLAGE OR RELEASE | 1. | When did the incident occur? Date 12 /05 /2000 Time 3:30 PM (approximately) month/day/year | |------------|--| | 2. | Where did the incident occur? The incident occurred at MacDermid's facility located at | | | 526 Huntingdon Avenue, Waterbury, CT. | | 3. | How did the incident occur? (Describe the cause) During routine maintenance and inspection of a | | | concrete wastewater collection sump, a hole approximately four (4) inches in diameter was discovered at the bottom of the sump. It is unclear what actually caused the hole to | | 1 . | develop: Under whose control was the chemical or petroleum product at the time of the incident? | | | MacDermid, Inc. | | | Mailing & street address: | | | Waterham 06702 | | | Town: Waterbury State: CT Zip: 06702 Telephone: (203) 575-5703 | | 5. | Who is the owner of the property onto which the spill occurred? | | | MacDermid, Inc. | | | If this is a corporate property or property owned jointly, who is the represents the owner? | | | Corporate property ☑ Property owned jointly ☐ | | | Name: | | | Mailing & street address: | | | Town: State: Zip: Telephone: | | 6. | When was the incident verbally reported to the Department of Environmental Protection? | | | Date 12 / 06 / 2000 Time 2:00 PM month/day/year | 79 Elm Street Hartford, CT 06106-5127 http://dep.state.ct.us | | Name: Gregory J. Strong on behalf of MacDermid, Inc. | |---|--| | | Mailing & street address: | | | Town: Waterbury State: CT Zip: 06702 Telephone: (203) 575-5703 | | | What were the chemicals or petroleum products released, spilled or discharged? Give an exact description of each of the materials involved in the incident, including the chemical names, percent concentrations, trade names, etc. | | | If the chemicals are Extremely Hazardous substances or CERCLA hazardous substances they must be identified as such and include the reportable quantity (RQ). Please attach
a Material Safety Date Sheet (MSDS) for each chemical involved | | | What were the quantities of chemicals that were released, spilled or discharged to each environmental medium (air, surface water, soil, ground water)? [NOTE: Connecticut General Statutes requires the reporting of any amount of any substance or material released to the environment]. | | | An unknown volume of process industrial wastewater was released. | | 3 | Did any of the chemical(s) travel beyond the property line? [NOTE: Materials that enter the ground water are considered have gone beyond the property line.] | | | While unknown, based upon conditions at the site, MacDermid believes | | | that none of the material associated with this incident flowed beyond our | | | property line. | 79 Elm Street Hartford, CT 06106-5127 http://dep.state.ct.us | · | |---| | What actions were taken to respond to and contain the release, spill or discharge? | | The piping which directed the process wastewater into this sump has been cut and | | re-routed directly into a larger collection sump. This larger collection sump | | has been used as the intermediary treatment step after the wastewater collection | | sump at issue. The larger sump was visually inspected by MacDermid personnel and no | | defects or irregularities were observed. | | | | What actions are being taken to prevent reoccurrence of an incident of this type? (Attach additional sheets if | | necessary) As noted above, MacDermid has terminated the use of this wastewater collection sump. | | In addition, MacDermid will inspect other wastewater collection sumps in this | | facility for damage or defects. | | | | | | | | Were there any injuries as a result of the incident? If so, list the names of exposed individuals, their addresses, phone numbers and describe their injuries. (Attach additional sheets if necessary) N/A | | Name:N/A | | Malling & street address: | | Town: State: Zip: Telephone: | | What is the appropriate advice regarding medical attention necessary for exposed individuals? | | | | , | | | | | 79 Elm Street Hartford, CT 06106-5127 http://dep.state.ct.us | MacDermid is unaware of any known or anticipated health risks, accute or chronic, | | | | | |---|--|-------------------------------|--|--| | associated with this releas | e. | | | | | | | | | | | Was the incident completely cleaned up by the time this report was submitted? If not, what are the anticipated remedial actions and their duration? The sump was drained of any wastewater. | | | | | | | and analyze soil adjacent to the | | | | | CERTIFICATION: I hereby affirm that the | he foregoing statement is true to the best of | my knowledge. | | | | Kythy | he foregoing statement is true to the best of | | | | | Signature Signature | he foregoing statement is true to the best of | Date | | | | Kythy | he foregoing statement is true to the best of | irs 12/06/00 | | | | Gregory J. Strong Print Name | he foregoing statement is true to the best of | Date (203) 575-5703 | | | | ignature Gregory J. Strong | he foregoing statement is true to the best of Manager of Regulatory Affa Title | Date (203) 575-5703 Telephone | | | State of Connecticut Department of Environmental Protection **Bureau of Waste Management** Oil and Chemical Spill Response Division 79 Elm Street Hartford, CT 06106-5127 Telephone: Routine Calls (860)424-3024 Emergency 24 hours (860)424-3338